
Automated WebAssembly Function Purpose Identification
Alan Romano and Weihang Wang

University of Southern California, Los Angeles, USA

{ajromano,weihangw}@usc.edu

ABSTRACT

We constructWAspur, a tool to automatically identify the pur-

poses of WebAssembly functions. Specifically, we construct and an-

alyze an extensive and diverse collection of WebAssembly modules.

We then construct semantics-aware intermediate representations

(IR) of the functions. Finally, we encode the function IR for use in a

machine learning classifier. To this end, the classifier can predict the

similarity of given function against known named with an accuracy

rate of 87.4%. We hope our tool will enable efficient inspection of

optimized and minified WebAssembly modules.

1 INTRODUCTION

WebAssembly defines a portable and compact bytecode format

to serve as a compilation target for other languages such as C,

C++, and Rust. Unfortunately, the bytecode format of WebAssem-

bly makes it challenging to analyze and understand the purpose of

WebAssembly binaries (e.g., whether it is benign or malicious). In

practice, many WebAssembly modules, including malicious mod-

ules, are delivered through third-party services where the source

code is not available [11], making the problem critical. While pre-

vious work [4, 11] has looked at the purposes of WebAssembly

programs, which is coarse-grained, there has been little work in

understanding the functionality at the WebAssembly module level.

To this end, we develop WAspur, an automated classification

tool to understand the intended functionality of individual We-

bAssembly functions within the applications.WAspur constructs

abstractions on the semantic functionality of the module resilient

to syntax differences, and these abstractions are used in a machine-

learning classifier to identify what functionality the WebAssembly

functions implement. We make the following contributions:

• We propose an intermediate representation (IR) to abstract

underlying semantics of WebAssembly modules.

• We construct a dataset of diverseWebAssembly samples from

real-world websites, Web browser extensions, and GitHub.

• We perform a comprehensive analysis of the collected We-

bAssembly samples, classifying 10 different purposes.

• We develop WAspur and it achieves an 87.4% accuracy rate.

2 DESIGN

We develop WAspur, an automated tool leveraging a semantics-

resilient intermediate representation (IR) designed to capture the

effects produced by WebAssembly instructions. WAspur classifies

the functions in a WebAssembly module using two main compo-

nents, as shown in Figure 1. (1) Abstraction Generator, collects the

abstractions for all functions within the module to represent each

function in our IR. (2) Classifier, uses the sequence of abstracted

IR units as input into a neural network classifier. The Classifier is

trained on the names of repeatedly found in WebAssembly modules

and outputs the probability that an inspected function belongs to

the group of functions found having similar names.

Abstraction
Generator

Classifier

WebAssembly
 Binary

$func:

Predicted Function 
Name

Collected
Samples

Training
Samples

Abstraction Sequence 
w/ Function Name New Abstraction

Sequence w/o 
Name 

$func:

$some:
$name:

Figure 1:WAspur System Overview

Data Acquisition and Handling. We collected WebAssembly

samples from four sources: (1) Alexa top 1 million websites ( Oct.

2018∼May 2020), (2) 17,682 top Chrome extensions sorted by in-

stalled users (all with more than 1,000 users, March 25∼30, 2019), (3)
16,385 Firefox add-ons sorted by installed users (on July 30, 2019),

and (4) Public Git Archive dataset [10] (on Oct. 3, 2019).

Classifier. Using the IR constructed from the program abstrac-

tions, the classifier determines the functionality of a function by

predicting the name of a function with a similar abstraction trace.

– Encoding Abstractions as Features: It uses a neural network model

to predict labels for the given abstraction sequence. Our input into

the neural network is the sequence of abstractions produced in

the interprocedural control-flow graph of the target function, e.g.,

“set set for store if ...”. Such a string is embedded as a numeric

vector with an integer representing one of the eight abstraction

types we define. The vector requires predefined sequence length,

so for abstraction traces longer than the length, we truncate it.

– Training the Classifier: We use non-minified names grouped to-

gether by their abstraction sequences as the labels for classification.

The label strings are encoded using a multi-hot encoding scheme

to map each label to an index of a numeric vector. The classifier

outputs a vector whose floating-point values correspond to the

probabilities that a certain label should apply to the sample. The

classifier is trained and evaluated by splitting the dataset into a

training set of 80%, a validation set of 10%, and a test set of 10%.

– Neural Network Architecture: We tune the hyperparameters of

the neural network model by constructing a shallow neural net-

work with two hidden layers of 1024 and 512 units, respectively.

Each layer uses the ReLU activation function [1]. The abstraction

sequence string is embedded in an embedding layer as a numeric

vector truncated to at most 250 integers. The output layer consists

of 189 units that use the softmax activation function. We use Adam

gradient descent [7] and configure the network to use 30 iterations

for training.

1



ACSAC’ 22, December 5–9, 2022, Austin, TX Alan Romano and Weihang Wang

Table 1: # of Category Features and Examples For Each Category.

Category
Export Functions Import Functions Internal Functions File Source

(# of Features and Examples) (# of Features and Examples) (# of Features and Examples) (# of Features and Examples)

C1. Auxiliary Library 193 matches 261 create_element_Document 2,284 GetStrOffset 45 Https Everywhere

C2. Compression 9 lz4BlockEncode 0 32 decompressFunc 19 gorhill/uBlock

C3. Cryptography 1,273 pbkdf2_generate_block 54 BlockHash 16 _sphincsjs_public_key_bytes 953 shanlusun/blockchain

C4. Cryptominer 90 _cryptonight_hash_variant_1 0 52 _cryptonight_destroy 769 bitcoin.co.ua

C5. Game 4,170 Runtime_Animation 2,319 mousedown_callback 60,025 _SparseTextureGLES 168 juegosfriv3.com

C6. Text Processing 48 DjiSpellcheckerWasmMain 0 945 expand_rootword 64 Co:Writer Universal

C7. Image Processing 451 _build_gaussian_coefs 66 draco_receive_decoded_mesh 2,653 decode_RGB565 52 BabylonJS/Website

C8. JavaScript Carrier 1 data 0 0 11 wpost.co

C9. Numeric Processing 40 div_s 3 env.logit 65 sqrt 545 Moonlet Wallet

C10. Support Test Stub 4 test 1 SomeOtherFunction 0 1,273 codeburst.io

C11. Standalone Apps 22,621 BarcodeReader 6,198 pthread 15,069 dlmalloc 61 01alchemist/TurboScript

C12. Unit Test 3,683 good 376 wasi_unstable.fd_renumber 77,581 testFunctionPi 76 xtuc/webassemblyjs

Note: Columns in gray present# of features, where examples are presented on their right-side columns. If there is no features present on a particular column, there is no example.

3 PRELIMINARY RESULTS

Module-Level Categorization. Wemanually inspect and label the

files by mostly relying on four types of information obtained from

the WebAssembly binaries: import function names, export function
names, internal function names, and file source. As shown in Table 2,

we categorize the samples into 12 different categories. For each

category, we present the counts of modules found in each source

location, statistics on the sizes of the WebAssembly binaries in text

and binary formats in Table 3 in Appendix. In total, we produce

more than 204,619 signatures from the import, export, and internal

function names, as summarized in Table 1.

Classifier.WAspur is built on Node.js [2] and Python. The system

contains two components. The Abstraction Generator component

is implemented as a Node.js application, while the Classifier com-

ponent is implement using Python. The classifier uses a neural

network model constructed using the Keras and TensorFlow.

Table 2: WebAssembly Use Case Categories.

Category Description

Compression Performs data compression operations.

Cryptography Performs cryptographic operations (e.g., hashing).

Game Implements stand-alone online games.

Text Processing Performs text or word processing.

Image Processing Analyzes or edits images.

Numeric Provides commonly used mathematical or

Processing numeric functions.

Support Test Stub Probes environment for WebAssembly support.

Standalone Apps Independent standalone programs.

Auxiliary Provides commonly used data structures

Library or utility functions.

Cryptominer Performs cryptocurrency-mining operations.

Code Carrier Stores JavaScript/CSS/HTML payloads.

Unit Test Ensures conformance to language specification.

0 5 10 15 20 25 30
Iteration

0.4

0.6

0.8

1.0

Va
lu

e Accuracy
Precision
Recall
F1 Score

Figure 2: Training Metrics over Iterations

Figure 2 presents the metrics obtained by the neural network

while training it over 30 iterations. After training the neural net-

work, evaluating the network on a test set shows that the model

can obtain a final accuracy of 87.4%. The precision and recall of the

model are 0.9 and 0.86 respectively (F1 score is 0.88).

Performance and Memory Overhead.We find that the neural

network within the Classifier can be trained in a short amount of

time, and classification is near-instant for the abstraction sequence

provided to the classifiers: an average of 47.84 seconds to train and

0.17 seconds to predict labels for the test set.

4 RELATEDWORK

[4, 11] aims to study the prevalence and real-world usage of

WebAssembly. In particular, prior works [6, 8, 12] analyzing We-

bAssembly have focused on cryptojacking. There are a few tools [3,

5] made to analyze WebAssembly security and execution. Wasabi

[9] is a framework to perform dynamic analysis on WebAssembly

code via instrumentation.

5 FUTUREWORK

Currently, the Classifier only uses the abstracted IR of the instruc-

tions defined within WebAssembly functions. It may be beneficial

to include other additional information from the remaining We-

bAssembly module sections as well. For example, the predictive

performance may be increased by including the function types

within the abstracted traversal sequence.

REFERENCES

[1] Abien Fred Agarap. 2018. Deep Learning using Rectified Linear Units (ReLU).

[2] Node.js Foundation. 2019. Node.js. https://nodejs.org/en/

[3] William Fu, Raymond Lin, and Daniel Inge. 2018. TaintAssembly: Taint-Based

Information Flow Control Tracking for WebAssembly. (2018). arXiv:1802.01050

[4] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of

Real-WorldWebAssembly Binaries: Security, Languages, Use Cases. InWWW’21.
[5] H. Jeong, J. Jeong, S. Park, and K. Kim. 2018. WATT : A novel web-based toolkit

to generate WebAssembly-based libraries and applications. In 2018 IEEE Interna-
tional Conference on Consumer Electronics. 1–2.

[6] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew

Miller, Nikita Borisov, Manos Antonakakis, and Michael Bailey. 2019. Outguard:

Detecting In-Browser Covert Cryptocurrency Mining in the Wild. In WWW’19.
[7] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. https://doi.org/10.48550/ARXIV.1412.6980

[8] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina

Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. 2018.

MineSweeper: An In-depth Look into Drive-by Cryptocurrency Mining and

Its Defense. In ACM CCS’18. 1714–1730.
[9] Daniel Lehmann andMichael Pradel. 2018. Wasabi: A Framework for Dynamically

Analyzing WebAssembly. (2018). arXiv:1808.10652

[10] Vadim Markovtsev and Waren Long. 2018. Public Git Archive: a Big Code dataset

for all. CoRR abs/1803.10144 (2018). arXiv:1803.10144

[11] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. 2019.

New Kid on the Web: A Study on the Prevalence of WebAssembly in the Wild. In

DIMVA’19. Springer, 23–42.
[12] Alan Romano, Yunhui Zheng, and Weihang Wang. 2020. MinerRay: Semantics-

Aware Analysis for Ever-Evolving Cryptojacking Detection. In ASE’20. 12 pages.

2

https://nodejs.org/en/
https://arxiv.org/abs/1802.01050
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1808.10652
https://arxiv.org/abs/1803.10144


Automated WebAssembly Function Purpose Identification ACSAC’ 22, December 5–9, 2022, Austin, TX

Table 3: Categories of the WebAssembly Binary Samples.

Category
# of # of Chrome # of Firefox # of GitHub LOC (Wat) Wasm File Size (KB)

Websites Extensions Add-ons Repos min max avg min max avg

Compression 1 6 10 5 581 284,910 19,090.91 1.20 875.48 64.02

Cryptography 1,348 51 2 48 73 184,318 5,671.93 0.22 433.70 10.36

Numeric Processing 516 2 0 40 8 18,518 358.43 0.04 2,076.63 4.47

Game 279 16 0 22 413 13,190,961 6,447,261.13 0.89 34,957.01 15,638.83

Text Processing 65 2 0 0 511 1,071,478 19,154.64 1.06 2,512.93 47.91

Image Processing 32 0 1 33 67 1,073,067 98,587.79 0.17 2,985.78 240.55

Standalone Apps 15 4 8 76 6 2,590,432 346,139.82 0.05 7,483.21 937.00

Cryptominer 900 0 0 3 20,770 81,124 44,789.89 43.82 163.56 96.39

JavaScript Carrier 99 0 0 0 9 9 9 0.25 0.60 0.42

Auxiliary Library 7 9 22 86 7 485,928 27,773.30 0.05 1,577.53 104.77

Support Test Stub 1,258 0 0 40 1 31 5.82 0.01 0.36 0.03

Unit Test 0 0 0 1,763 1 1,705,804 9,746.07 0.01 5,478.25 30.49

Note: Cells in gray indicate the categories have the top four (or five for the websites) applications.

3


	Abstract
	1 Introduction
	2 Design
	3 Preliminary Results
	4 Related Work
	5 Future Work
	References

