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ABSTRACT
Recent advances in web technology have made in-browser crypto-
mining a viable funding model. However, these services have been
abused to launch large-scale cryptojacking attacks to secretly mine
cryptocurrency in browsers. To detect them, various signature-
based or runtime feature-based methods have been proposed. How-
ever, they can be imprecise or easily circumvented. To this end, we
propose MinerRay, a generic scheme to detect malicious in-browser
cryptominers. Instead of leveraging unreliable external patterns,
MinerRay infers the essence of cryptomining behaviors that differ-
entiate mining from common browser activities in both WebAssem-
bly and JavaScript contexts. Additionally, to detect stealthy mining
activities without user consents, MinerRay checks if the miner can
only be instantiated from user actions.

MinerRay was evaluated on over 1 million websites. It detected
cryptominers on 901 websites, where 885 secretly start mining with-
out user consent. Besides, we compared MinerRay with five state-
of-the-art signature-based or behavior-based cryptominer detectors
(MineSweeper, CMTracker, Outguard, No Coin, and minerBlock).
We observed that emerging miners with new signatures or new
services were detected by MinerRay but missed by others. The re-
sults show that our proposed technique is effective and robust in
detecting evolving cryptominers, yielding more true positives, and
fewer errors.
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1 INTRODUCTION
Since Bitcoin [51] was introduced in 2009, over 2,300 cryptocur-
rencies have emerged [4]. In just a decade, cryptocurrencies have
grown from a tiny niche to a huge industry with a $250 billion
market capitalization [29]. Thanks to recent advances in web tech-
nologies, certain cryptocurrencies can be mined directly in the web
browser. Since the first in-browser cryptomining service CoinHive
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was launched [3] September 2017, such services have become a
possible revenue model for website owners. Simply by including a
script, websites can use client browsers to make money [58].

However, this paradigm has been abused to mine cryptocur-
rencies without user consent. For example, just within three days
after CoinHive was released, The Pirate Bay, a BitTorrent search
engine, started to mine secretly, making it the first high-profile site
to deploy CoinHive in scale. In the next few months, this malicious
practice has become increasingly rampant. In Q4 2017, instances of
cryptojacking have skyrocketed (increased by 8500%) [53], where
cryptojackingmalware that embedded CoinHiveminers were found
on over 30,000 websites [47]. Since then, in-browser cryptojacking
has become one of the most prominent online threats [45, 63, 66].
In March 2019, CoinHive shutdown its site and servers in March
2019 [26]. However, this has not removed the threat of in-browser
cryptojacking attacks [70].

Some miners use WebAssembly [71], a new type of language
that can be run in browsers at near-native speed. For instance,
Sumokoin [57] and Lethean [30] are built atop the CryptoNight
hashing algorithm [62] or its variants like CryptoNight-Heavy [56].
Some are implemented in JavaScript. For example, CoinIMP [14]
is leveraging asm.js [2] as an alternative to WebAssembly. Others
use both JS and WebAssembly. For example, WebDollar [73], a
newly invented web cryptocurrency, implements the Argon2 hash
algorithm [23]. Moreover, mining services keep introducing new
cryptominers and updating underlying hashing algorithms. For
instance, CryptoLoot [27], a popular cryptomining service, will
completely switch to mining uPlexa [68] from Monero [58].

Considerable research efforts have beenmade to develop browser
cryptojacking defense techniques [33, 40, 42, 43, 49, 61]. In partic-
ular, CMTracker [40] identifies cryptominers by calculating the
cumulative time of the websites spent on signature hash functions
and profiling stack structures to look for repetitive behavioral pat-
terns. MineSweeper [43] counts the number of bit operations to
recognize cryptographic hash functions. Outguard [42] is another
state-of-the-art detector that uses machine learning techniques to
detect cryptominers. It instruments a web browser and collects
features such as the number of web workers and the presence of
WebAssembly to train an SVM classifier. Unfortunately, existing
approaches fall short because they are either limited to specific
hashing algorithms/implementations or assume particular runtime
behaviors, which vary greatly among different cryptocurrencies.
These limitations lead to imprecise results and difficulties in de-
tecting new cryptocurrencies. In particular, we made the following
observations on the ever-evolving landscape of in-browser mining:
• We argue that the majority of CPU-minable cryptocurrencies can
be mined in browsers, providing the market value is attractive

https://doi.org/10.1145/3324884.3416580
https://doi.org/10.1145/3324884.3416580


ASE ’20, September 21–25, 2020, Virtual Event, Australia Alan Romano, Yunhui Zheng, and Weihang Wang

and the mining mechanism is anonymous. Consequently, miners
will exhibit variance that makes detection challenging.
• Detectors targeting particular hashing algorithms cannot detect
miners using different algorithms. For example, MineSweeper
focuses on the CryptoNight used byMonero [43]. It cannot detect
uPlexa [67], which uses CryptoNight-UPX [69].
• Detectors based on signature functions or particular runtime
behaviors are less effective in detecting cryptominers for new
cryptocurrencies, as such patterns can be significantly different.
• Several techniques assume miners are always implemented in
WebAssembly. They cannot detect JavaScript-based miners such
as CoinIMP and WebDollar.
In this paper, we propose a robust cryptojacking detector, Min-

erRay, which is resilient to variants of hashing algorithms and im-
plementations. Unlike existing strategies based on fragile patterns
such as the number of particular operations, execution time, or We-
bAssembly features, our technique relies on program semantics that
are invariant across programming languages and implementations of
cryptomining algorithms. Moreover, MinerRay distinguishes mali-
cious cryptojackers from benign ones, by inspecting interactions
between users and cryptomining modules.
Contributions. This paper makes the following contributions:
• Wepropose an intermediate representation (IR) to abstract under-
lying semantics ofminerswritten inWebAssembly and JavaScript,
which supports cross-language analysis and is resilient to vari-
ants (e.g., different versions of the same hashing algorithm or
binaries generated by different compilers) (Section 5.1.2). To the
best of our knowledge, MinerRay is the first to perform cross-
language analysis on WebAssembly and JavaScript for detecting
cryptominers.
• We develop a light-weight static analysis that infers the critical
steps of hashing and reasons about user consent (Section 5.3).
• We evaluate MinerRay on over 1 million websites. It identified
miners on 901 websites connecting to 12 unique mining services,
where 885 websites start mining without user consent.
• Weperform an extensive comparison studywith five state-of-the-
art detectors, namely: MineSweeper, CM-Tracker, Outguard, No
Coin, andminerBlock. MinerRay detected themost websites with
the least errors (false positives and false negatives combined).
Besides, miners with new signatures and new services were
detected by MinerRay but missed by others.
• We make our implementation and results publicly available [15].

2 PRELIMINARY
2.1 In-Browser Cryptomining
In-browser cryptominers are getting more sophisticated. An in-
browser cryptominer can create a distributed cryptomining pool
with its processing power without client-side software installa-
tion [49]. Cybercriminals can stealthily deliver such code and mine
cryptocurrency using the client-side resources without consent.
Figure 1 shows a typical workflow of such a cryptominer:

1 A user visits a web page with a link to a miner.
2 The miner is delivered as JavaScript and creates aWebSocket

to connect the miner and mining pool.

User Web Server

JS Miner Server

Mining Pool Server

Visit a website

Retrieve a JS miner 

Authenticate with a site key

Assign a job with a target hash

Compute hash
Submit a result

Accept and record hashes completed 

1

2

3

4

5
6

7

Repeating the steps 5~7

(i.e., continuously computing and submitting hashes)

…

Figure 1: In-Browser Cryptomining.

3 The miner is authenticated with a site key that ties computed
hashes to the miner.

4 Once the miner is authenticated, the mining pool server
assigns a job to the miner with a target hash.

5 Web workers are created to compute the hash in parallel.
6 The satisfying hash is sent to the mining pool server.
7 Once verified, the mining pool server accepts the result and

assigns new tasks. The web workers repeat steps 5 – 7 .
To be stealthy, miners are usually configured to use less than

100% of the CPU. If throttling is specified, the web worker thread is
paused momentarily to restrict CPU usage. Otherwise, the worker
thread keeps running. When the goal is met, miners are rewarded
with cryptocurrencies for computing a certain number of hashes.
In cryptojacking scenarios, the funds go to the attacker’s wallets.

2.2 Hash Functions
The core of cryptomining is to compute hashes via hash functions.
A hash function maps an input of arbitrary length to a fixed-length
output. Such computations are usually done in an iterative manner.
In particular, the input message 𝑀 is partitioned into blocks of a
specific size. Then, a compression function 𝑓 is applied iteratively
on each message block𝑚𝑖 to compute the hash ℎ𝑖 = 𝑓 (ℎ𝑖−1,𝑚𝑖 )
for 𝑖 = 1 to 𝑛. Therefore, each iteration is fairly segregated due to
the data dependencies from its previous iteration.

Figure 2 shows a typical hash function implemented in C and
the corresponding WebAssembly. In Figure 2(a), the hash function
consists of five steps: 1 A 512-bit (i.e. 64-byte) hash state H0 is
initialized and copied to a buffer. 2 The message is divided into
512-bit message blocks and processed by a compression function
F(). 3 The remaining part is copied to a temporary buffer S→buf.
4 The last partial block is padded with 0s and processed by the
compression function. 5 The result is a 256-bit hash value.

Compared to common programs running in browsers, this iter-
ative procedure is unique and a likely indicator of cryptomining.
Based on this observation, MinerRay looks for the semantics corre-
sponding to the critical steps above and identifies hash functions.
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typedef struct {
uint32_t h[16]; // internal hash state
uint8_t buf[64]; // store partial block
int buflen; // buf[] length

} hashState;
hashState S;

void hash(uint8_t *msg, int msglen,
uint8_t *hashval) {

index = 0;
len = msglen;
memcpy(S->h, H0, 64);
for (; len>=512; index+=64, len=len-512) {

F(S->h, msg+index);
}
if (len > 0) {
memcpy(S->buf, msg+index, len>>3);
S->buflen = len>>3;

}
while (S->buflen < 64) {

S->buf[S->buflen++] = 0;
}
F(S->h, S->buf);
memcpy(hashval, (unsigned char*)S->h+32, 32);

}

(a) C Implementation.
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(b) WebAssembly Opcodes.
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24

1Step

get_local $l1
i32.const 8000
i64.load
i64.store
get_local $l1
i32.const 8008
i64.load
i64.store offset=8
...
get_local $l1
i32.const 8056
i64.load
i64.store offset=56

1
2
3
4
5
6
7
8

9
10
11
12

2Step

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

get_local $p1
set_local $l4
loop $L0
get_local $l1
get_local $p0
get_local $l5
i32.add
call $f22
get_local $l5
i64.const 64
i64.add
set_local $l5
get_local $l4
i64.const -512
i64.add
tee_local $l4
i64.const 511
i64.gt_u
br_if $L0

end

3Step

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

get_local $l4
i64.const 0
i64.ne
if $I0
get_local $p0
get_local $l5
i32.add
set_local $l6
get_local $l4
i64.const 3
i64.shr_u
set_local $l7
get_local $l2
get_local $l6
get_local $l7
call $f11
get_local $l3
get_local $l7
i32.store

end

4Step

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76

get_local $l8
i32.const 64
i32.lt_s
if $I1
loop $L1
get_local $l3
get_local $l8
i32.const 1
i32.add
i32.store
get_local $l2
get_local $l8
i32.add
i32.const 0
i32.store 8
...
get_local $l8
i32.const 64
i32.lt_s
br_if $L1

end
end
get_local $l1
get_local $l2
call $f22

5Step

77
78
79
80
81
82
83
84
85
86
87

88
89
90
91

get_local $p2
get_local $l1
i32.const 32
i32.add
tee_local $l6
i64.load align=1
i64.store align=1
get_local $p2
get_local $l6
i64.load offset=8
i64.store offset=8
...
get_local $p2
get_local $l6
i64.load offset=24
i64.store offset=24

Figure 2: Hash Function (C implementation and WebAssembly Opcodes of the Function).

3 MOTIVATION
Background: Evolving Cryptominers. In-browser cryptomin-
ers are becoming more diverse and sophisticated. For example,
CryptoNight, one of the most popular cryptomining algorithms,
has more than 9 versions originated from 3 variants [12].

In addition, cryptominers are written in more diverse languages.
WebAssembly is no longer the only choice for in-browser cryp-
tominers. The recent trend of developing less computation extensive
PoW (Proof-of-Work) algorithms [5] also opens up the opportuni-
ties for JavaScript (and asm.js) based cryptominers. In fact, there
are already miners using both WebAssembly and JavaScript [73].

Besides, cryptominers are trying to be less noticeable by main-
taining reasonable workloads. This is because, in part, earlier ver-
sions of cryptominers excessively consume resources, making users
notice them and remove them quickly. Recent cryptominers do not
aggressively take the computation resources over. To this end, the
above trends lead to the three significant challenges in detecting
cryptominers in the wild: (1) various cryptomining algorithms, (2)
cryptominers written in diverse programming languages, and (3)
cryptominers becoming less greedy in taking resources.

In this section, we use three emerging cryptocurrencies to ex-
plain the three challenges of detecting evolving cryptominers.
VariantAlgorithm (uPlexa [68]). uPlexa is an untraceable digital
currency atop CryptoNight-UPX algorithm. It has gained consid-
erable popularity. CryptoLoot switched from Monero to uPlexa in
October 2019. GivenMonero and uPlexa are based on different hash-
ing algorithms (CryptoNight and CryptoNight-UPX respectively),
we conjectured detection tools focusing on CryptoNight will fail to
detect uPlexa. To verify this speculation, we run MineSweeper on
a Monero miner and a uPlexa miner found on websites.

MineSweeper [43] identifies CryptoNight-basedminers by count-
ing the number of bit operations and matching them against five
hash functions used by the CryptoNight algorithm: BLAKE [18],
AES [32], Groestl [36], Keccak [21], and Skein [35]. If more than
three hash functions are observed, MineSweeper concludes a Cryp-
toNight based cryptominer is detected. However, MineSweeper

failed to detect the uPlexa miner, indicating that the number of bit
operations is not a robust feature. Therefore, classification methods
atop it can be circumvented or misclassify new algorithms. By con-
trast, MinerRay successfully detects the uPlexa miner as it focuses
on the hash function semantics and is thus algorithm-agnostic.
JavaScript-based Miners. There are JavaScript based cryptomin-
ers including CoinIMP [14] and JSECoin [65]. CoinIMP is written in
JavaScript implementing lyra2-webchain egalitarian algorithm [11].
In particular, it leverages asm.js implementation as an alternative to
WebAssembly, providing better user-experience when WebAssem-
bly technology is not available at runtime. CoinIMP and JSECoin
vary greatly in program languages, signature functions and runtime
behaviors. We made the following observations:
• CMTracker cannot detect them because they do not contain the
modeled signatures. Besides, their repetitive behaviors do not
match the threshold patterns.
• We were not able to run Outguard on JSECoin miners. Out-
guard does not support Chrome 65+, while JSECoin requires the
Array.flat() that is available after Chrome 69. Instead, we
manually inspected the code and found the signatures modeled
by Outguard are not present in JSECoin miners.
• MineSweeper does not support JS miners and misses them.
Because our analysis is based on language-independent interme-

diate representation (IR), MinerRay supports both languages and
successfully detects such JS-based miners.
JS-WebAssembly Hybrid Miner (WebDollar [73]). As shown
in Figure 3, WebDollar uses both JavaScript and WebAssembly.
The Argon2 hash function is implemented in WebAssembly and its
output is processed by JavaScript to iteratively computes the hash
until the result contains the desired number of leading 0s.

MineSweeper, CMTracker, and Outguard cannot detect the Web-
Dollar miner because they were not able to handle both JavaScript
and WebAssembly at the same time. To detect such a hybrid miner,
in addition to understanding both JavaScript and WebAssembly
programs, the interoperation (as shown in Figure 3(c)) should be
analyzed to connect the JavaScript and WebAssembly programs.
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(a) JavaScript Code. (c) WebAssembly

Opcodes.

(b) JS-WebAssembly

Interoperation.

... 
targetHash = 0xffffff00
while( true ) {
var hash = _argon2_hash()
...
if ( hash < targetHash )
break;

...

(func _argon2_hash
...
i64.or
i64.const 3
i64.shl
i64.and
i64.xor
i64.shr_u
i64.load
call $f53 ...

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

Figure 3: WebDollar Miner.

Table 1: Comparison with State-of-the-art Detectors.

MineSweeper CMTracker Outguard MinerRay

Traditional Yes Yes Yes Yes
Variant Algo. No1 No1 No1 Yes
JS-based/Hybrid No2 Limited3 Limited4 Yes
Stealthy No5 No5 No5 Yes
1: They focus on CryptoNight algorithms. New variants are often outside of
their models. 2: Does not support JavaScript. 3: Insufficient models. 4: Does not
support Chrome 65+, while some of those miners require Chrome 69 or newer.
5: Models focus on aggressive cryptominers.

To the best of our knowledge, MinerRay is the first technique
that understands and connects logics in both languages to detect
such a cryptominer. MinerRay successfully identifies the miner.
Summary. Table 1 summarizes the comparison results. We observe
existing techniques do not perform very well to detect cryptominers
using variant algorithms, multiple languages, and stealthy methods.

In particular, miners using variant algorithms (e.g., uPlexa and
Proof-of-Work based miners) are usually missed. JavaScript and
hybrid cryptominers (e.g., CryptoLoot, CoinIMP, JSECoin, andWeb-
Dollar) also impose challenges to the existing techniques. CM-
Tracker and Outguard are partially affected by those cryptominers
written in diverse programming languages because they focus on
runtime behaviors. However, the way of obtaining the behaviors
are partially dependent on the languages as they count known
languagle dependent primitives (e.g., key operations and known
computation functions). Finally, stealthy cryptominers are designed
to circumvent detections by exposing different resource usage pat-
terns. Because most existing techniques rely on external patterns
that can be easily changed, they do not perform well. In contrast,
MinerRay can detect these miners successfully because MinerRay
focuses on program semantics of hashing.

4 THREAT MODEL
In-browser Cryptojacking. We assume crypto miners are de-
livered via web pages and steal client-side computing resources
without consent. Any user visiting that page becomes a victim of
in-browser cryptojacking attacks. Attackers can host such code
on their websites or compromised websites. They can even de-
liver miners via malicious advertising or other third-party services.
Cryptojacking outside of the web browsers is out of the scope.
Impact of User Consent. Existing cryptominer detectors often
focus on identifying cryptomining activities, without considering

users’ consent. Note that cryptomining activity itself is not mali-
cious, while it is malicious if the mining activity is done without
users’ awareness. MinerRay takes users’ consent into account.

5 SYSTEM DESIGN
System Overview. Figure 4 shows the workflow of MinerRay, con-
sisting of three major components: Programming Language Lifting
(Section 5.1), CFG Construction (Section 5.2), and Cryptojacking
Detection (Section 5.3).

Stadnard

Wasm Binary

Intraprocedural

CFG

Hash Function

Inference

User Consent 

Call Graph
Interprocedural

CFG

Detection 

Result

MinerRay

CFG Construction
Cryptojacking

Detection

Binary Converter/

JS-Wasm Compiler

Programming Language 

Lifting

asm.js-derived 

Wasm Binary

asm.js

JavaScript 

Program

Program

Abstraction

* IR: Intermediate Representation

Figure 4: Overview of MinerRay.

5.1 Programming Language Lifting
Cryptominers are usually implemented in multiple languages such
as WebAssembly and JavaScript. Although the main module is
usually written in one language, its cryptomining algorithm com-
ponents can be written in both WebAssembly and JavaScript [73].
Moreover, there are non-standard WebAssembly binaries such as
asm.js-derived modules that include customized opcodes. Such di-
versity imposes a significant challenge in analyzing cryptominers
in the wild, as they can be implemented by a combination of the
above diverse languages.

To effectively analyze cryptominers, we first convert both JavaScript
and WebAssembly programs, including the non-standard asm.js-
derived WebAssembly, to standard WebAssembly binaries (Sec-
tion 5.1.1). Then, we lift the standardWebAssembly into a high-level
intermediate representation (Section 5.1.2).

5.1.1 Converting Programs Written in Diverse Programming Lan-
guages into Standard WebAssembly. We convert a JavaScript pro-
gram to WebAssembly in a way similar to AssemblyScript [13].
For the asm.js-derived modules, we convert non-standard asm.js
opcodes to standard WebAssembly according to the equivalent in-
struction mapping shown in Table 2. The detailed mapping (i.e.,
the complete list of equivalent instructions) can be found on our
project website [15].

5.1.2 Lifting Programs via Program Abstraction. We introduce a
set of abstraction rules to translate WebAssembly opcodes to our
IR, which is later used to capture high-level semantics correspond
to the critical tasks in cryptominers. Table 3 shows a subset of
the abstraction rules. Due to the space limit, we only list the key
WebAssembly instructions: accessing local variables and selective
unary/binary operations with operand(s) of type i32 (32-bit inte-
ger). Operations on global variables (get_global, set_global)
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(a) WebAssembly Code. (c) Stack States

$l1

8000

$l1

[8000]64

$l1

8008

$l1

[8008]64

$l1

Line 1

$l1
get_local $l1
i32.const 8000
i64.load
i64.store
get_local $l1
i32.const 8008
i64.load
i64.store offset=8

1
2
3
4
5
6
7
8

Line 2 Line 3 Line 4

Line 5 Line 6 Line 7 Line 8

(b) Abstraction Rules Applied

Line Stack Operation Def Set Operation Abstraction

1 push( $l1 )

2 push( 8000 )

3 pop() → 8000, push(R64(8000))

4 pop() → R64(8000), pop() → $l1 Def($l1)=Def($l1)∪ {$l1=R64(8000)} W64($l1, R64(8000))

5 push( $l1 )

6 push( 8008 )

7 pop() → 8008, push(R64(8008))

8 pop() → R64(8008), pop() → $l1 Def($l1+8)=Def($l1+8)∪{$l1=R64(8008)} W64($l1+8, R64(8008)) Legend

Variable Constant Memory

Figure 5: Running Example of Abstraction Rules.

Table 2: Asm.js Opcode Mapping Examples

Instruction Type Count Opcode Mapping Mnemonic Mapping

Integer Division 4 0xd3 ↦→ 0x6d I32AsmjsDivS ↦→
i32.div_s

Floating Point Math 11 0xa3 𝑥 𝑦 ↦→ F64Pow(𝑥 , 𝑦) ↦→
(0x44 𝑥 , 0x94) × 𝑦 (f64.const 𝑥 , f64.mul) * 𝑦

Memory Load 7 0xd7 ↦→ 0x2c I32AsmjsLoadMem8S ↦→
i32.load8_s

Memory Store 5 0xde ↦→ 0x3a I32AsmjsStoreMem8 ↦→
i32.store8

Type Conversions 4 0xe3 ↦→ 0xa8 I32AsmjsSConvertF32 ↦→
i32.trunc_f32_s

and value types other than i32 (i64, f32, and f64) are modeled
similarly and thus omitted.
Abstracting Stack Operations.WebAssembly execution is based
on a stack machine architecture, so, our abstraction models We-
bAssembly instructions based on the effects on the stack. It captures
the data and control flows. In particular, for instructions that do
not assign variables or contain control constructs, we only model
their execution on a virtual stack.

“i32.const 𝑐” pushes an i32 constant 𝑐 onto the stack. “i32.shl”
pops two values from the stack, performs a shift left operation and
pushes the resulting i32 value back to the stack. “i32.load” pops
the top value on stack as an address, reads 4 bytes from that address
and pushes the resulting i32 value onto the stack. Note that the
prefix i32 indicates the size of the operand is a 32-bit integer. For
a 64-bit integer, i64 will be used as a prefix.

For assignments, we update the alive variable definitions and
generate C-like abstractions. For example, “set_local 𝑣” pops a
value 𝑒 from the stack and assigns 𝑒 to 𝑣 . This instruction is ab-
stracted to “𝑣 = 𝑒”. “tee_local” is similar to “set_local”, except
that the top value on the stack is not popped. “i32.store” is mod-
eled by “W32(𝑒2, 𝑒1)”, where the 𝑒1 and 𝑒2 are the values popped
from the stack firstly and secondly.
Abstracting Structured Control Flow Constructs. WebAssem-
bly supports control flow constructs such as block, loop and if.
We model them as abstract control flow modules.

Conditionals and loops are modeled by goto and guarded goto:
“loop 𝑔:” creates a label 𝑔 and is abstracted as “𝑔:”. “if 𝐼” is ab-
stracted to “if (𝑒)”, where the condition 𝑒 is popped from the stack.

Table 3: Abstraction Rules.

Instruction Stack Operation1,2,3 Def Set Computation Abstraction

get_local 𝑣 push(𝑣)
set_local 𝑣 pop()→𝑒 Def(𝑣) = Def(𝑣) ∪ {𝑒𝑙 } 𝑣 = 𝑒;
tee_local 𝑣 top()→𝑒 Def(𝑣) = Def(𝑣) ∪ {𝑒𝑙 } 𝑣 = 𝑒;
i32.const 𝑐 push(𝑐)

i32.add
pop()→𝑒1, pop()→𝑒2,
push(𝑒1 + 𝑒2)

i32.shl
pop()→𝑒1, pop()→𝑒2,
push(𝑒2 ≪ 𝑒1)

i32.gt_s
pop()→𝑒1, pop()→𝑒2,
push(𝑒2 > 𝑒1)

i32.load pop()→𝑒 , push(R32(𝑒))

i32.store
pop()→𝑒1, Def(𝑒2) = Def(𝑒2) ∪ W32(𝑒2,𝑒1);pop()→𝑒2 {addr(𝑒1)𝑙 }

loop 𝑔: 𝑔:
if I pop()→𝑒 if (𝑒) {
br 𝑔 goto 𝑔;
br_if 𝑔 pop()→𝑒 if (𝑒) goto 𝑔;

return
if(retLen()==1) return 𝑒; or

pop()→𝑒 return
block 𝐵 𝐵: {
end }

call 𝑓
paraNum(𝑓 )→𝑛,

𝑓 (𝑒1,𝑒2,...,𝑒𝑛);for(𝑖 = 𝑛; 𝑖 > 0; 𝑖--)
pop()→𝑒𝑖

call_indirect

pop()→𝑒 ,

𝑓 (𝑒1,𝑒2,...,𝑒𝑛);
paraNum(𝑒)→𝑛,
for(𝑖 = 𝑛; 𝑖 > 0; 𝑖--)

pop()→𝑒𝑖

1. retLen() gives the number of return values (either 1 or 0) of current function.
2. paraNum(𝑓 ) returns the number of return values of function 𝑓 .
3. func(𝑒) returns the function name by checking the function table with index 𝑒 .

“br 𝑔” is a jump to label instruction. “br_if 𝑔” is a conditional jump
to label 𝑔 with the condition popping from the stack.

A return instruction either returns a value that is popped from
the stack or returns a special value “None”. Direct calls are param-
eterized with explicit function names whereas indirect calls are
parameterized with an index to the function table. Function pa-
rameters are obtained from the stack. Note that each instruction is
annotated with a label, denoting its line number in the program.
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(b) Merge Consecutive Writes in a Loop.

W32 (da, R32 (sa));

W32 (da+4, R32 (sa+4));

. . .

W32 (da+4i, R32 (sa+4i));

memcpy (da,sa,16i);

L:

W8 (da+idx, R32 (sa));

sa = sa + 1;

idx = idx + 1;

if (idx < idx+len) 

goto L;

memcpy (da+idx, sa, len);

sa = sa + len;

idx = idx +len;

(a) Merge Sequential Writes. 

Figure 6: Abstraction Merging Rules.

Abstracting Memory Operations. We observe that hash func-
tions extensively use consecutive memory copy and access opera-
tions. We further merge consecutive memory buffer writes based
on the rules summarized in Figure 6. Sequential writes to consecu-
tive memory buffers are simplified to a single memset or memcpy
statement (Figure 6(a)), where parameters “𝑑𝑎” and “16𝑖” represent
the destination address and the number of bytes to be written re-
spectively. The semantics of writing to consecutive memory buffers
can also be realized by using a loop to write each byte (Figure 6(b)).
Running Example. Figure 5 presents how the MinerRay lifts a We-
bAssembly program using the abstraction rules shown in Table 3.
Figure 5(a) shows a few WebAssembly opcodes extracted from the
motivation example in Figure 2 (precisely from Step 1 ). Figure 5(b)
presents which abstraction rule is applied while each line of the
code in Figure 5(a) is interpreted, including the corresponding stack
and Def set operations, as well as resulting abstractions (i.e., IR).
Figure 5(c) shows a state of the stack during the interpretation of
each line.

Initially, the virtual stack is empty (Line 1 in Figure 5(c)). At lines
1-2, the value of “$𝑙1” and address 8000 are pushed onto the stack,
according to the stack operations shown in Table 3. The second
column of Figure 5(b) shows the concrete stack operations. Next,
line 3 loads the content at 8000 and pushes the result R64(8000).
At line 4, “i64.store” pops “$𝑙1” and R64(8000) from the stack.
It then performs a store operation using “$𝑙1” as the address and
R64(8000) as the value. We generate an abstraction (i.e., a statement)
“W64($𝑙1, R64(8000))” and update the definition set (def set) of “$𝑙1”.

Similarly, lines 5-8 are abstracted to “W64($𝑙1 + 8, R64(8008))”.
Essentially, the semantics of each four-line block is copying the
memory content starting at 8000 and 8008 to address “$𝑙1” and
“$𝑙1 + 8”. To facilitate analysis, we further merge consecutive mem-
ory copies so lines 1-8 are abstracted to “memcpy($𝑙1, 8000, 16)”,
according to the abstraction merging rules shown in Figure 6.

5.2 CFG Construction
Given the lifted IR obtained in Section 5.1, we extend our analysis to
understand the entire program. Specifically, we construct a control
flow graph for each procedure and link them together to obtain an
interprocedural control flow graph for the program.
Intraprocedural CFG. We first build an intraprocedural CFG for
each function. Then, we identify loops and repetitive operations
(i.e., manually unrolled loops) to further abstract them to higher

level representations. For example, a “for” construct that stores
the same constant value (e.g., 0) in consecutive memory will be
replaced by a memset abstraction.
Interprocedural CFG (ICFG). We link intraprocedural CFGs to-
gether to build an interprocedural CFG (ICFG) and represent the
entire program. There are two major challenges: (1) A recursive
call in a program can introduce loops. When a recursive function
call is found, we simply treat it as an iterative operation for further
analyses. (2) An indirect function call may result in an imprecise
interprocedural CFG. As targets of indirect calls are only known at
runtime, MinerRay conservatively assumes that any functions that
match with the callee’s function type can be possible targets. This
results in a larger ICFG but does not introduce false negatives.

5.3 Hash Function Detection
A hash function generally has these critical steps to (1) initialize
hash state, (2) hash each message blocks, (3) store remaining data
in a temporary buffer, (4) pad and hash the last partial block, and
(5) generate the hash from the final state.

As suggested in [20, 31, 55], almost all existing cryptographic
hashes can be described as functions based on a block cipher, where
step 2, 3 and 4 are necessary in block cipher implementations.
Therefore, the key idea of our approach is to see if a program
exhibits semantics matching above steps.

memcpy(hash_state, initial_value_ptr, hash_state_size);

Loop:

Compression();  /* compression function */

Increment block pointer by block_size

Decrement remaining message length by block_size

if (remaining message is larger than a full block) 

goto Loop;

if (remaining message exist) {

memcpy(tmp_buf, remain_msg, remain_msglen);  

W32(tmp_buflen_ptr, remain_msglen);  

}

if (temp buffer is not a full block) 

memset( tmp_buf[tmp_buflen_ptr], C, 

block_size - remain_msglen);

Compression();

memcpy(hash_value,hash_state*, hash_value_size);

Step 1

Step 2

Step 3

Step 4

Step 5

Initialization

Block 

Hashing 
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Figure 7: Hash Function Semantics.

5.3.1 Hash Function Semantics. We formulate the semantics of
above critical steps as a template (Figure. 7). Steps 1 and 5 model
the initialization and the result fetching. They are not strong signals
due to the variances in hashing algorithms and excluded as patterns.
• Step-2 captures the iterative block hashing loop. In each iteration,
the compression function is invoked on each block. The block
size, the message pointer, the original message length and the
remaining message length should be inferred.
• Step-3 processes the remaining message. If the remaining mes-
sage exists, it is copied to a temporary buffer. The temporary
buffer and buffer length should be identified.
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• Step-4 represents the padding process for the remaining message.
A memset or memcpy is used to fill out the buffer to the full block
size, starting from the current temporary buffer length.

5.3.2 Matching Models to Programs. Algorithm 1 describes the al-
gorithm to identify the critical steps: D_HashEachBlock recognizes
message block hashing loops. D_StorePartialBlock checks if a
partial block is copied to a temporary buffer. D_PadLastBlock
detects if the last partial block is padded.

The detection algorithm takes the control flow graph (CFG) of
the abstracted program and the common sizes of block ciphers
(e.g., 256 bits) as input. The final output represents potential hash
algorithms identified from the program.

Algorithm 1: Inferring Hash Functions
Input: CFG(V, E), BSIZES[]={256,512,1024}
Output: HashCandidates[], HashEachBlock[], StorePartialBlock[]

1 D_HashEachBlock(CFG(V,E),BSIZES):
2 for loop l ∈ V do
3 for size ∈ BSIZES do
4 𝑐𝑜𝑛𝑑_𝑠𝑡𝑚𝑡 ← conditional statement in l
5 𝑑𝑒_𝑠𝑡𝑚𝑡 , 𝑖𝑛_𝑠𝑡𝑚𝑡 ← statement in l de/increased by size
6 if (de_stmt | |in_stmt) && MoreFullBlocks(cond_stmt) then
7 block_size← size
8 rem_msglen, block← operand in de_stmt, in_stmt
9 msglen← get last definition of rem_msglen

10 HashEachBlock = HashEachBlock ∪ {l, block_size, rem_msglen, block,
msglen}

11 D_StorePartialBlock(CFG(V,E), HashEachBlock):
12 for construct l ∈ HashEachBlock do
13 for conditional node m ∈ Successors(l) do
14 𝑐𝑜𝑛𝑑_𝑠𝑡𝑚𝑡 ← conditional statement in m
15 if (PartialBlockExists(cond_stmt) && memcpy exists) then
16 tmp_buf, rem_msg, rem_msglen← memcpy args
17 tmp_buflenptr← store rem_msglen
18 StorePartialBlock = StorePartialBlock ∪ {𝑙 ,𝑚, 𝑡𝑚𝑝_𝑏𝑢𝑓 ,

𝑡𝑚𝑝_𝑏𝑢𝑓 𝑙𝑒𝑛𝑝𝑡𝑟 }
19 D_PadLastBlock(CFG(V,E), StorePartialBlock):
20 for construct m ∈ StorePartialBlock do
21 for conditional node n ∈ Successors(m) do
22 𝑐𝑜𝑛𝑑_𝑠𝑡𝑚𝑡 ← conditional statement in n
23 if IsNotFullBlock(cond_stmt) && memcpy/set exists then
24 if PadConstantsToBuffer(args of memcpy/set) then
25 𝑙 ← HashEachBlock construct of𝑚
26 HashCandidates = HashCandidates ∪ {𝑙 ,𝑚, 𝑛}

D_HashEachBlock iterates all loop nodes in the CFG to detect
nodes that partition a message to fixed-size blocks. Specifically, the
function checks the loop condition and in/decrement expressions
(lines 4-10). If a variable is decremented by a particular block size,
it is a candidate of the remaining message length (rem_msglen).
Similarly, the current message pointer block is inferred if a vari-
able is increased by the block size. It compares the lengths of the
remaining message and the full block in a conditional statement to
match against hashing iteration predicates.

D_StorePartialBlock checks the successors of the nodes in
HashEachBlock and looks for predicates guarding the statements
that copy the remaining message to a temporary buffer. At line 15,
a helper function PartialBlockExists checks if a partial block
exists. The condition should either compare the remaining mes-
sage length (rem_msglen) with 0 or compare the current message
pointer (block) with the entire message size (msglen). If the partial
block exists and memcpy can be found within this node, the pointer
to the temporary buffer (tem_buf) and its length (tem_buflenptr)
can be inferred. Then, StorePartialBlock is updated with the

ancestor loop node (belongs to HashEachBlock), the current pred-
icate node and the inferred variables.

D_PadLastBlock checks successors of the obtained nodes and
looks for predicates padding the last partial block. IsNotFullBlock
compares the temporary buffer length with the block size and
checks memory operations (memcpy/memset). Particularly, if the
destination address starts from “tmp_buf + tmp_buflenptr” and
the length equals to “block_size - rem_msglen”, we consider the
last partial block is padded.

Once the detection algorithm identifies the nodes representing
above hashing steps, MinerRay further checks if the nodes are
within a loop construct to decide the presence of a cryptominer.

5.4 User Consent Inference
We consider miners that inform users of crypto mining activity
legitimate. If a detected miner does not seek consents from users,
we say it is involved in a cryptojacking attack. To this end, we
inspect a web page with miners and see if the user is informed
or not. Specifically, we first look for simple strings like “mining",
“CPU", etc. on the web page. To determine if the user permission
is requested, we explore HTML user events and see if the miner
instantiation can be triggered without user actions.

button.onClick = () => {
xhr.onreadystatechange = function() {
if (xhr.readyState === xhr.DONE) {

p.postMessage({type: 
'auth-success'});

}
};
xhr.open('POST','authedmine.com/

auth/');
xhr.send('auth&key=' + siteKey);
}

1
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6
7

8
9

obj.onClick()

Network Response

parent.onMessage()

miner.work()

miner.hash()

Figure 8: User Consent Call Graph on synonymus.cz

Figure 8 illustrates how synonymus.cz requests user consent
using a pop-up message. The JavaScript snippet creates an onClick
event handler for the “Allow for this session” button. When the
button is clicked, the onClick handler will eventually triggers the
miner instantiation, starts theWebWorker threads (Miner.work()),
and starts mining by calling the Miner.hash().

Without losing generality, we assume user consent is collected
by clicking HTML elements. We focus on exploring invocations
of the onclick events of HTML objects that may instantiate We-
bAssembly cryptominers. However, because the JavaScript snippets
instantiating cryptominers are usually obfuscated (especially in
malicious scenarios), static methods are unlikely to work.

Therefore, we develop a simple dynamic approach that explores
the onclick events and checks if WebAssembly instantiation APIs
such as WebAssembly.instantiate can be invoked. Although
event explorations could be improved using the methods presented
in [17, 52], we observed this simple approach is sufficient in practice,
because, in part, most malicious websites instantiate WebAssembly
miners without user interference.
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6 EVALUATION
Implementation. We use WABT [16] to convert WebAssembly
binary to its text format. We develop a parser in Node.js to construct
control flow graphs. To infer user consent, we use Esprima [39] to
instrument JavaScript and build the dynamic call graphs.
Dataset.MinerRay was evaluated on the top 1.2 million websites
from the Alexa Top 10 Million Websites list. In total, we have
crawled and investigated 1,246,074 websites. These websites were
crawled starting from January 2019 to January 2020. For each web-
site, we crawled the homepage and waited an additional 5 seconds
after the page is fully loaded. We also visited all links on the home-
page and crawled these sub-pages. We compiled the Chromiumweb
browser with “–dump-wasm-module” flag to dump all WebAssem-
bly binaries that it encounters.

6.1 Cryptominer Detection Results
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Figure 9: Miners by Alexa Rank.

Prevalence of Cryptominers. In total, MinerRay found cryp-
tominers on 901 websites. Figure 9 shows the number of sites
serving cryptominers. We observed the number of cryptominers
decreases for lower ranked websites.

We investigate miner distributions on the landing pages or sub-
pages. Among the 901 websites, we observed 560 miners on the
landing pages and 341 on subpages. Wemanually check the purpose
of the websites. Most of detected sites are torrent websites, movies
and videos, etc., which is probably because users are likely to stay
longer on these streaming websites for more profits.
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Figure 10: Miners by Cryptomining Services.

Cryptomining Services. We observed 12 unique mining services.
Figure 10 shows the number of sites using each service. Note that
the same site could have used multiple miners that connected to

different mining services. As shown in the figure, CoinHive was the
most popular mining service deployed on 237 websites, followed
by CryptoLoot found on 186 websites.

6.2 Comparison Study
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Figure 11: Comparison with State-of-the-Art Detectors.

We compare MinerRay with three state-of-the-art cryptomining
detectors (MineSweeper [43], CMTracker [40] and Outguard [42])
and two signature-based browser extensions (No Coin [41] and
minerBlock [28]).
Methodology. From our dataset, we scan 3,825 websites. Specifi-
cally, we run the three existing tools and MinerRay on the websites.
To that end, we find that there are 2,306 websites that are detected
by at least one detector. Among the 2,306 websites, we manually
analyze each of them to verify whether the website conducts cryp-
tomining or not.
Interpretation and Ground truth. As shown in Figure 11, there
are three outcomes: “Detected”, “False Alarm”, and “Missed”. “De-
tected” means that the websites detected by each tool are correctly
identified as cryptominers. “False Alarm” represents the cases that
are not cryptominers. We manually verified all false alarms and
observed that they are typically from online games, cryptography
programs, and compression utilities. “Missed” indicates the web-
sites have cryptominers but are not detected. Note that wemanually
verified all 2,306 websites detected by at least one detector in our
experiment, which forms the ground truth of our experiment.
Summary. As shown in Figure 11, MineSweeper and MinerRay
detect the most samples correctly. Other techniques miss many
websites containing malicious cryptominers (92, 91, 159, and 63
by CMTracker, Outguard, No Coin, and minerBlock, respectively).
However, MineSweeper significantly suffers from false alarms. It
detects 1,406 websites that turned out to be benign. The result
shows that MinerRay outperforms existing techniques. It detects
the most malicious websites, without causing a significant number
of false alarms. Note that MinerRay raises 6 false alarms where it
incorrectly identified non-hashing or benign WebAssembly code as
miners, which are from a game and cryptographic library. Those
cases follow similar patterns described in Section 5.3.1 (e.g., block-
based data computations and copy operations). However, the data
content and sources differ from real cryptominers. To handle the
cases, we may need to implement data-flow analysis to understand
more details regarding the data going through the computations.
We leave this as our future work.
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In the following paragraphs, we explain the detail of each detec-
tor and compare it with MinerRay.

First, MineSweeper detects CryptoNight-based miners by count-
ing the number of bit operations to recognize cryptographic hash
functions. The result shows that the number of bit operations is
not a precise way to detect cryptominers, leading to a significant
number of false alarms. Unlike MineSweeper, MinerRay leverages
hashing function semantics that better capture the essence of the
cryptomining behaviors.

Second, CMTracker detects cryptominers by calculating cumu-
lative time spent on signature hash functions and profiling stack
structures for repetitive behavioral patterns. If 10%+ of the exe-
cution time is spent on hash functions or a repeated call chain
occupies 30%+ of the whole execution time, it is considered to be
a miner. CMTracker produces one false alarm and misses 92 web-
sites. The majority of these cases use hashing libraries built into the
browser and implemented as native code. As a result, the profiling
information collected by CMTracker may not contain expected sig-
nature hash functions or repetitive patterns. By contrast, MinerRay
achieved better results because MinerRay focuses on hash function
semantics and supports JS miner detection.

Third, Outguard uses machine learning techniques to detect
cryptominers. It develops a set of features (such as the presences
of WebAssembly and signature hash functions, and the numbers
of web workers/WebSocket connections) from the dynamic trace
collected by an instrumented web browser. Similar to all super-
vised learning techniques, the quality of the training data and the
features considered are critical to its performance. Compared to
MinerRay, Outguard misses 91 websites, which used the JSECoin
service. The recent trend of diversified cryptomining algorithms
and implementations would break Outguard’s detection as the fea-
tures (e.g., signature hash functions) are changed. As MinerRay
does not rely on signature functions and other features (e.g., the
use of WebAssembly), MinerRay detected these websites.

Fourth, No Coin and minerBlock are blacklist based techniques.
No Coin uses a blacklist to block network requests matching the
URL patterns on the list. minerBlock leverages both blacklist and
script-scanning to look for potentially dangerous mining patterns,
which makes it effective in detecting miners with code embed-
ded into the JavaScript file. No Coin and minerBlock miss 159
and 63 websites, respectively. Websites that were missed by No
Coin and minerBlock used several evasion techniques such as non-
blacklisted URLs and function name minification to avoid function
name matching. MinerRay was able to catch them as we focus on
internal semantics instead of URLs and function names.

The results essentially show that cryptominers evolve fast, mak-
ing the predefined features and blacklists outdated hence circum-
vented quickly.

6.3 User Consent Results
Out of 901 websites with cryptominers, we found only 16 websites
informed users of the background cryptomining (Table 4). In par-
ticular, 13 (81%) started to mine automatically except for only 3
websites that ask for consent before starting the mining. Nearly half
of them (7 out 16) do not offer a way to disable the miner. 15 do not
allow users to limit CPU usage. 5 websites present unnoticeable text

warnings at the bottom of the page. Additionally, the text messages
generally describe that a cryptocurrency (e.g., XMR) will be mined,
which is difficult for a non-technical user to understand.

Note that, if we consider those cryptominers that inform users
as non-malicious, other cryptominer/cryptojacking detectors cause
false alarms because of them. In particular, we find that the 16
websites MinerRay identified to inform users are all detected by
existing detectors, leading to 16 additional false alarms for other
detectors except for MinerRay.

By entering TPB you agree to XMR being mined using your CPU. If 
you don’t agree please leave now or install an adBlocker

Figure 12: Landing Page of ikwilthepiratebay.org

Example. The website ikwilthepiratebay.org (visited in January
2019 [6]), is a clone of The Pirate Bay and is one of the sixteen web-
sites that informs users about cryptomining activities. As shown in
Figure 12, it displays a text message stating that XMR will be mined.
However, the text message is placed at the bottom of the page
in a visibly-smaller text. The message uses the terms “XMR" and
“mined", which do not clearly explain the process and should not
be considered as a valid user consent request. Note that MinerRay
can automatically identify the mining relevant UI components (e.g.,
messages), informing users explicitly (e.g., by increasing the mes-
sage’s font size).

6.4 Performance and Memory Overhead
Table 5 presents the average space and runtime overhead for scan-
ning a sample program (e.g., JS and WebAssembly). The values are
the average values observed during the evaluation. Specifically, the
average file size (the second column) MinerRay processed during
the evaluation is 447.39 KB. The third column shows the average
memory overhead by MinerRay at runtime. It is 37.23 MB, which
is fairly small and negligible in modern machines. The last two
columns show the runtime overhead. To scan a program, MinerRay
constructs both intra- and inter-procedure control flow graphs.
The average time spent on the graph construction is 427.78 ms.
Then, MinerRay takes 1,398.6 ms to scan the program to determine
whether it is a malicious cryptominer or not. Overall, the average
scanning time is less than 1.9 seconds (1,825 ms), which we believe
reasonably fast, considering the average size of the input is 447.39
KB. We also observe that the performance and the file size have a
linear relationship, indicating that MinerRay is scalable. Note that
our prototype can be further optimized. We leave optimizing our
implementation as our future work.
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Table 4: 16 Websites That Inform User Cryptomining

Rank Website Purpose Auto Opt-In1 Disable2 How to Disable Throttle3 Format
12448 http://thepiratebay.se.net Torrents × — × Text at footer
21716 http://pirateiro.com Torrents × — × Text at top
54870 http://stevenuniver.se TV Show Button Click × Button at top
55980 http://ikwilthepiratebay.org Torrents × — × Text at footer
60744 http://filmclub.tv TV & Movies × — × Text at footer
80243 http://browsermine.com Cryptomining Slide to 0 Slider at top
114592 http://pirateunblocker.com Torrents × — × Text at footer
120040 http://pirateunblocker.me Torrents × — × Text at footer
148450 http://synonymus.cz Thesaurus × Dismiss Popup × Popup
230354 http://dragonballzpolo.blogspot.com TV Show Dismiss Popup × Popup
330224 http://artistic-nude-images.com Adult × Dismiss Popup × Popup
361840 http://whatwouldyoudoif.se Game × — × Banner at footer
445252 http://fluxustv.blogspot.com TV × Dismiss Popup × Popup
645235 http://dariodomi.de Imagemap Link Click × Text at top
652324 http://justhodl.blogspot.com Blog Click "x" in Sidebar × Text in sidebar
2079986 http://pokemongoinformer.com Blog Dismiss Popup × Popup
1: means Auto Opt-In, × represents No Auto Opt-In. 2: means it can be disabled, × means no mechanism to disable.
3: indicates the cryptominer has a throttle mechanism, × means no throttle mechanism employed.

Table 5: Runtime and Space Overhead.

File Size Total Memory Time (ms)

(KB) Usage (MB) Graph Const. Scanning

Average 447.39 KB 37.23 MB 427.78 ms 1398.60 ms

7 DISCUSSION
Evaluation Data Collection Methodology. The web crawlers
we built visited the homepage of each website and waited an addi-
tional 5 seconds after the page is fully loaded. In addition, we visited
all available links on the homepage and crawled these sub-pages to
increase the chance of observing cryptominers. It is possible that
cryptominers are on particular pages that the web crawlers did not
visit or that may be triggered only under certain user navigation
patterns or idle time. Even though testing a website with compre-
hensive coverage is orthogonal to our work, MinerRay may find
more cryptominers if being incorporated with more effective web
crawling techniques.
Compression Functions.We do not consider compression func-
tion signatures yet. A possible improvement may be achieved by
integrating AI techniques on signatures.
Obfuscation Techniques. Attackers can leverage existing obfus-
cation methods [1, 7, 19, 25, 37, 44, 50] to mask cryptominers to
avoid detection. Source code level obfuscation techniques such as
inserting opaque predicates [50], adding bogus control flow [7, 19],
changing variable names [1, 7], and injecting dummy code [44]
do not hinder MinerRay’s detection because they do not change
the underlying semantics. However, obfuscation techniques that
encode or encrypt the entire program code [8–10] may break Min-
erRay and other existing static methods. We leave better handling
of obfuscations to our future work.
Generality of Our Technique. As we discussed in Section 5.3,
almost all existing cryptographic hash functions can be described
as being based on a block cipher, where the semantics are necessary

for block cipher implementations. Thus, our technique is general.
However, to support a new language other than WebAssembly or
JavaScript, the IR would need to be defined on how the steps within
the technique are commonly implemented in the new program-
ming language. Depending on the complexity of the language, this
may be challenging to create. Additionally, since other languages
support many external libraries providing hashing functionality, it
may increase the difficulty in creating a mapping to the IR that is
complete.
Complementary to Existing Approaches. Existing detectors
rely on signatures or runtime features and do not consider program
semantics. We believe considering semantics could be complemen-
tary to existing techniques. In addition, existing tools require man-
ual efforts to complete the user consent analysis, while MinerRay
can infer user consents by analyzing the program.

8 RELATEDWORK
URL Blacklisting. URL blacklisting tools rely on predefined black-
list of known cryptomining servers [34, 45, 49, 54]. Eskandari et
al. [34] detected over 30,000 cryptomining websites by using strings
such as “coinhive.min.js” to query the Censys dataset. Papadopou-
los et al. [54] conducted a study on 107,511 cryptomining websites,
aiming to compare the profitability of web-based cryptomining and
advertising. The cryptomining websites were collected based on the
blacklists from No Coin. Since December 2017, URL blacklisting has
been incorporated into the Opera web browser [46]. This approach
is easy to circumvent through file and code obfuscation.
CPU Usage Profiling. CPU Usage analysis looks for abnormally
high CPU usage [43, 49, 61, 64] because miners are likely to cause a
spike in CPU usage. Although greedy miners can be found, it’s easy
to circumvent by throttling [34]. In addition, benign CPU-intensive
tasks, such as video processing or gaming, could trigger false alarms.
Our approach is not restricted by the CPU usage patterns.
Behavioral Analysis. Several approaches used behavioral analy-
sis to detect cryptominers. Papadopoulos et al. [54] capture several
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metrics when visiting awebsite, such asmemory consumption, CPU
thread usage, and system temperature, to identify cryptominers.
CMTracker [40] captures data based on a hashing-function profiler
and a stack-structure profiler to identify miners. Rüth et al. [60]
augment No Coin with dynamic analysis afterwords to identify
mining sites that get past the static filter. Bijmans et al. [22] also use
a modified Chromium build to capture WebAssembly modules and
looking at the WebSocket messages passed in a large-scale study to
identify cryptominers hidden in websites.
Machine Learning Techniques. Other approaches used machine
learning classification techniques to identify cryptominers. Musch
et al. [48] create n-gram sequences from WebAssembly binaries
to use as features for classification. Outguard [42] collects several
features from an instrumented browser to classify sites. RAPID [59]
captures resource usage and API event data through instrumented
HTML APIs to create features for an SVM classifier.
Code Analysis. Code analysis inspects program behaviors to see
if the patterns of particular instructions match known cryptomin-
ers [43, 49, 61, 72]. For example, SEISMIC [72] detectsWebAssembly
cryptominers by counting the number of executed arithmetic op-
erations. MineSweeper [43] detects CryptoNight-based miners by
counting the number of bit operations and comparing the signa-
tures observed in CryptoNight. However, operation count is not
a robust feature. As our comparison results shown in Section 6.2,
MineSweeper falsely identified 1,327 benign websites as crypto-
jacking websites. By contrast, our approach focuses on the hash
function semantics and is thus algorithm-agnostic.
Identifying Cryptographic Functions. Our work is also similar
to program analysis techniques that identify cryptographic applica-
tions. Gröbert et al. [38] identify cryptographic primitives and keys
in binary programs with dynamic binary program instrumentation.
Aligot [24] detects obfuscated cryptographic primitives by compar-
ing their input-output parameters. CryptoHunt [74] uses symbolic
execution to identify cryptographic functions in obfuscated binary
code. CloudRadar [75] collects features from hardware performance
counters to identify the execution of cryptographic applications to
detect side-channel attacks in cloud systems.

9 CONCLUSION
In this paper, we have presented MinerRay, an effective detection
technique which automatically detects the probable existence of
stealthy cryptominers on awebsite. Instead of focusing on particular
URLs or signature functions, MinerRay identifies the presence of
malicious cryptominers by inferring hash function semantics and
reasoning about user consent of mining activity.

We have provided a systematic study of in-browser cryptominers
on Alexa Top 1.2 Million websites. Our evaluation results show
that MinerRay achieves high accuracy and is more effective than
signature-based approaches in detecting stealthy cryptominers. In
addition, we have studied the methods websites alerted users to
mining activity and provided recommendations for better practices.

AVAILABILITY
The MinerRay source code and data can be found at
https://miner-ray.github.io//.
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