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ABSTRACT
WebAssembly is a new programming language built for better

performance inweb applications. It defines a binary code format and
a text representation for the code. At first glance,WebAssembly files
are not easily understandable to human readers, regardless of the
experience level. As a result, distributed third-party WebAssembly
modules need to be implicitly trusted by developers as verifying the
functionality requires significant effort. To this end, we develop an
automated classification tool WASim for identifying the purpose of
WebAssembly programs by analyzing features at the module-level.
It assigns purpose labels to a module in order to assist developers in
understanding the binary module. The code for WASim is available
at https://github.com/WASimilarity/WASim and a video demo is
available at https://youtu.be/usfYFIeTy0U.
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1 INTRODUCTION
WebAssembly (abbreviated Wasm) is the newest web standard

to arrive. Since appearing in 2015 [2], WebAssembly has created
huge buzz in the front-end world. Prominent tech companies, such
as eBay, Google, and Norton, adopt the technology in user-facing
projects for use cases improving performance over JavaScript such
as barcode reading [12], pattern matching, and TensorFlow.js ma-
chine learning applications [16]. Currently, WebAssembly is sup-
ported by all major browsers [9].

The language defines a portable and compact bytecode format to
serve as a compilation target for other languages such as C, C++, and
Rust. This allows porting native programs to the web as modules
and executing at near-native speeds. Rather than being written
directly, WebAssembly bytecode is generated using compilers such
as Emscripten [1] orWasm-bingden [14].WebAssembly also defines
a text format meant to ease understanding for debugging. The text

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3415293

format provides a readable representation of the module’s internal
structure, including type, memory, and function definitions.

Fig. 1 shows aWebAssembly module in the bytecode and the text
formats. The C++ code snippet shown in Fig. 1(a) is the source code
the WebAssembly module is compiled from. The main function
assigns two variables and then compares their values. This C++
code is compiled to the WebAssembly binary as shown in Fig. 1(b).
The binary format is how aWebAssemblymodule is delivered to and
compiled by browsers. To ease debugging, the WebAssembly binary
can be translated to its text format (Fig. 1(c)), and it shows examples
of WebAssembly instructions, such as i32.sub and i32.load.

int main() {
int b = 9;
int a = 9;
if(a == b){
return 1;

} else {
return 0;

}
}
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(func $func0 (result i32)
(local $var0 i32)
i32.const 0
i32.load offset=4
i32.const 16
i32.sub
tee_local $var0
...

)

101
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103
104
105
106
107
108
109

0x00 0061 736d 0100 0000 0185 8080 8000 0160 .asm...........`
0x10 0001 7f03 8280 8080 0001 0004 8480 8080 ................
0x20 0001 7000 0005 8380 8080 0001 0001 0681 ..p.............
0x30 8080 8000 0007 9180 8080 0002 066d 656d .............mem
0x40 6f72 7902 0004 6d61 696e 0000 0acd 8080 ory...main......
0x50 8000 01c7 8080 8000 0101 7f41 0028 0204 ...........A.(..

(a) Source Code (c) WebAssembly Text Format

(b) WebAssembly Binary Format

Compile Translate

Figure 1: WebAssembly Code Sample

Although readable, the textual format still has a steep learn-
ing curve as the assembly-like language is more challenging to
understand compared with high-level languages. The language
only defines four numeric types, i32, i64, f32, and f64, making
the text formats of several applications such as string manipula-
tion and cryptographic hashing similar. This makes it difficult to
understand a module’s functionality from its code. Source maps
can be used to find the corresponding functionality in a high-level
source language. However, many malicious cryptominers using
WebAssembly modules are delivered through third-party services
where the source code is not available [10]. For such cases, devel-
opers and end users must either verify a WebAssembly module’s
actual functionality manually or trust its purpose blindly. Addition-
ally, previous work [10] has looked at the purposes ofWebAssembly
samples, no tools are made to automatically label samples.
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To this end, we develop an automated classification tool, WASim,
to help developers and users understand the purposes ofWebAssem-
bly applications. WASim analyzes program features at the module-
level to use in a machine-learning classifier and identifies We-
bAssembly modules as applications such as games, cryptographic
libraries, grammar utilities, and others.

2 WASIM
WASim identifies the purposes of WebAssembly programs by

analyzing code features. As shown in Fig. 2, WASim has three
major components: the Wasm Collector, the Feature Extractor, and
the WebAssembly Classifier. Given a URL, the Wasm Collector scans
the web page for WebAssembly and downloads the WebAssembly
binary files executed on the page (if any). Next, the Feature Extractor
converts the binary files into WebAssembly text-formatted files,
and then scans the text files to extract the desired features. Finally,
the WebAssembly Classifier takes in the extracted features and
uses them to classify the WebAssembly binary into one of eleven
predefined classes. The final output of WASim is a report that lists
identified program features and reports the identified purpose.

URL

Wasm 
Collector

Feature 
Extractor

WebAssembly
Classifier

WebAssembly
Binary

Extracted 
Features

Classifier 
Result

Use Case 
Report

Collected
Samples

Training
Features

Store
Samples

Figure 2: WASim Overview

2.1 Wasm Collector
The Wasm Collector is responsible for collecting the WebAssem-

bly binary files used on the desired web page. It works as follows.
Given a URL, a Chromium instance is launched, navigated to the
URL, and allowed to run for 15 seconds. When the browser loads a
WebAssembly module, the bytes are out to a file.

To collect WebAssembly binaries, we compile the Chromium
browser from the source with the “–dump-wasm-module” flag en-
abled. This flag dumps any WebAssembly module the browser de-
codes (largest observed is 45.62MB) to a file. Unlike network request
capturing or WebAssembly API instrumentation, the Chromium
flag method ensures that any WebAssembly instance run on the
page will be saved to a file with negligible runtime overhead.

2.2 Feature Extractor
The Feature Extractor first converts the WebAssembly binary file

to its text format, and then extracts desired features from the text file.
2.2.1 Standard-Conforming Binary Converter. The WebAssembly
binary format can be converted to the human readable text format

Table 1: Asm.js Opcode Mapping Examples

Instruction Type Count Opcode Mapping Mnemonic Mapping

Integer Division 4 0xd3 ↦→ 0x6d I32AsmjsDivS ↦→
i32.div_s

Floating Point Math 11 0xa3 𝑥 𝑦 ↦→ F64Pow(𝑥 , 𝑦) ↦→
(0x44 𝑥 , 0x94) × 𝑦 (f64.const 𝑥 , f64.mul) * 𝑦

Memory Load 7 0xd7 ↦→ 0x2c I32AsmjsLoadMem8S ↦→
i32.load8_s

Memory Store 5 0xde ↦→ 0x3a I32AsmjsStoreMem8 ↦→
i32.store8

Type Conversions 4 0xe3 ↦→ 0xa8 I32AsmjsSConvertF32 ↦→
i32.trunc_f32_s

Table 2: Program Features Used in Classification

Feature Type Feature

File-Related
Binary File Size
Text File Size
Expansion Factor

Program Complexity

Total Lines of Code
Minimum Lines of Code in Functions
Maximum Lines of Code in Functions
Average Lines of Code in Functions
Number of Functions

WebAssembly Specific

Is an Asm.js Module
Number of Types
Number of Data Sections
Number of Import Functions
Number of Export Functions

Function Signature Names of Import Functions
Names of Export Functions

by using toolkits such as WABT [7] and Binaryen [6]. However,
since Chromium automatically re-compiles asm.js code into We-
bAssembly binaries that use special asm.js-only opcodes [5], some
files are unreadable by WebAssembly binary-to-text tools.

To support these files, we define 31 mapping rules between
the asm.js opcodes and standard WebAssembly equivalents to
safely remove the asm.js opcodes Examples of the asm.js instruc-
tions and their mappings are shown in Table 1. For example, an
instruction 0xd7 (I32AsmjsLoadMem8S) is converted into an 0x2c
(i32.Load8_s) instruction.

2.2.2 Extracting Features from WebAssembly Text Files. As shown
in Table 2, the features of interest include: file-related, program
complexity,WebAssembly-specific, and function signature features.

These features were carefully chosen based onmanual inspection
of the text files. File-related features such as the expansion factor
between the binary and text formats are simple to obtain and can
easily help in broadly demarcating purposes. For example, 0.6KB
binary module is unlikely to be a Game or Cryptominer module as
these require more functionality than can be fit into 0.6KB. Program
complexity features, such as the number of lines of code in functions,
also provide useful information. Because of the terse syntax of
WebAssembly, important operations can only be reduced so much
in terms of lines of code before the functionality can no longer
be implemented. Features specific to WebAssembly, such as the
numbers of data sections and table entries, can signal probable
purpose categories. For example, game modules were found to
contain a large number of types and data sections. Finally, the
two text features, import/export function names, are useful when
deciding between two close choices.



WASim: Understanding WebAssembly Applications through Classification ASE ’20, September 21–25, 2020, Virtual Event, Australia

Additionally, WASim constructs a control flow graph (CFG) of
the WebAssembly text file by abstracting the instructions into high-
level blocks of code used to abstract functions in the text file.

2.3 WebAssembly Classifier
The WebAssembly Classifier uses the extracted features to deter-

mine the purpose category that the WebAssembly file belongs to.
2.3.1 Preprocessing Features. Function names are embedded as
numeric vectors by splitting them into separate words by camel-
case and underscore separators and then using the lists of words to
train a Doc2Vec [8] embedding. These vectors combined with the
other numeric features to use as input for the classifier.

Initially, the CFG was also included into the feature set by em-
bedding as a numeric vector using the graph2vec [11] graph repre-
sentation. However, we found that it lowered the classifier metrics
for the four classifiers tested. For example, inserting the CFG em-
bedding into the neural network model with 8 layers and the ‘tanh’
activation function dropped the accuracy from 91.6% to 63.49%. It
is likely that the control flow graph introduced more noise into the
data than anticipated, so it was removed from the input features.
2.3.2 Training the Classifier. The classifier is trained on a data
set of collected WebAssembly files. In order to train and evaluate
the classifier, the files are manually inspected and tagged with an
appropriate category label. Specifically, we manually inspected the
import, export, and internal function names which usually carry
informative descriptions of the module’s purpose. When function
names were obfuscated, we relied on external information such as
the file’s use in its source page.

The manual inspection results in eleven categories:
(1) Auxiliary Utility: gives data structures or utility functions.
(2) Compression Utility: performs data compression.
(3) Cryptographic Utility: performs cryptographic functions.
(4) Cryptominer: performs cryptocurrency-mining functions.
(5) Game Application: implements full online games.
(6) Grammar Utility: performs text or word processing.
(7) Image Processing Utility: analyzes or edits images.
(8) JavaScript Carrier: stores JavaScript payloads.
(9) Numeric Utility: gives mathematical or numeric libraries.
(10) Support Checker: checks if WebAssembly is supported.
(11) Other Applications: are full standalone programs.

Four types of classifier models, Naïve Bayes, random forest, SVM,
and neural network, were evaluated to see which would predict best
for use as the classifier in the full WASim system. The classifier is
trained and evaluated with a 10-fold cross-validation scheme. These
four models were selected because it was assumed that there would
be a nonlinear relationship between the features and the label. We
chose to include the Naïve Bayes model which favors linear models,
random forest and support vector machine which perform well
with both linear and nonlinear models, and neural networks since
they favor modeling nonlinear models. Each classifier model is
discussed in more detail in Sec. 4.

3 INSTALLATION AND USAGE
Installation. WASim is packaged as Docker containers, so Docker
and Docker Compose are prerequisites. The docker-compose.yml
file is needed to run the containers together, and is available on

the WASim page, https://github.com/WASimilarity/WASim. Once
downloaded, the system can be started by running the following
command in the same directory as docker-compose.yml:
$ docker-compose up

This will pull the images from Docker Hub and start a web server
on port 4000. To use WASim without Docker, Python 3.7, Node.js,
MySQL, and RabbitMQ need to be installed.
Usage. After starting the web server, WASim can be accessed by
navigating a local browser to http://localhost:4000. A web page
can be scanned for WebAssembly files using the "Scan" button, or
a WebAssembly binary file can be uploaded using the "Upload"
button. After performing an action, a results page will show the
determined label and probability along with the extracted features.

4 EVALUATION
WASim is built on Node.js [3]. A modified version of Chromium

browser version 77 controlled through the Puppeteer library [4]
is used to locate the WebAssembly binary. The classifier mod-
els are trained and evaluated on a laptop with an Intel Core i7
CPU@2.8GHz and NVIDIA GeForce GTX 1050 GPU. The neural
network model is constructed using the Keras library [17]. The
naïve Bayes, random forest, and SVM models were obtained from
the scikit-learn library [15]. The Doc2Vec model was obtained
from the gensim library.

4.1 Dataset
In total, 734 unique WebAssembly files were collected by crawl-

ing the Alexa Top 1 Million websites (4,275 samples), Chrome and
Firefox extensions (139 samples), and GitHub repositories (10 sam-
ples). The samples from websites and Chrome extensions were
collected using the Wasm Collector described in Section 2.1. The
samples from Firefox extensions and GitHub repositories were col-
lected by scanning the extensions and repositories for .wasm files.
The collected files serve various purposes, including cryptography,
image processing, and mathematical computations. The binary files
range from 0.01KB to 45.62MB with an average file size of 6.05MB.
The 734 files were manually labeled to form the dataset.

4.2 Classifier Models
4.2.1 Naïve Bayes Classifier. Naïve Bayes classifiers work by deter-
mining conditional probabilities of the classes using Bayes Rule [13]
with the features assumed to be conditionally independent. The
alpha hyperparameter ensures non-zero probabilities and affects
the generalizability of the underlying relationship on new data.

Figure 3: Naïve Bayes and Random Forest Classifier Metrics

https://github.com/WASimilarity/WASim
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Figure 4: SVM Classifier Metrics

Different alpha values (0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.5,
0.7, 0.9, 1, 2, 5, and 10) were tested. Fig. 3(a) shows the classifica-
tion metrics of the Naïve Bayes classifier as the alpha values is
increased. The best performing alpha value is 1 with an F1 score of
0.7115 and an accuracy of 64%. While this serves as a good baseline
measurement, better predictive performance is desired.

4.2.2 Random Forest Classifier. Random forest classifiers use an
ensemble of decision trees to decide the class that the input belongs
to [18]. A decision tree uses a series of branching paths split by
the possible values of the input features to reach a classification. In
a random forest, uncorrelated decision trees are constructed and
used to collectively predict the most likely classification.

Different numbers of estimators, 10, 20, 50, 80, 100, 150, 200,
and 500, were tested to see which performed best. This parameter
affects the number of decision trees used. Adding too many trees
can lead to over-fitting and negatively impact the accuracy.

Fig. 3(b) shows the performance of the random forest classifier
with different numbers of estimators. Increasing the number of
estimators has a positive effect on the F1 score up to 100 estimators.
After this, the increased values lead to decreasing F1 scores. The
highest accuracy observed was 82% with an F1 score of 0.8153.

4.2.3 Support Vector Machine Classifier. Support vector machine
(SVM) classifiers learn to distinguish between classes by learning
a hyperplane that separates the data points into classes. The ideal
hyperplane provides the maximum margin between data points
from every class. Kernel functions transform the data points into
different, higher-dimension feature spaces to enable searching for
more hyperplanes. SVM uses a regularization parameter, C, as toler-
ance for misclassified points, with a lower C value leading to more
misclassified data points.

The SVM classifierwas evaluatedwith different C values (0.00001,
0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 1, 2, 5, and 10) and kernel
types (linear and radial basis function). The kernel type affects the
accuracy of current data while C affects performance for new data.

Fig. 4 shows the performance of the SVM classifier with different
values. We found that the linear kernel provided better results
between the two, achieving an accuracy of 87% and F1 score of
0.878. In both kernels, performance plateaus as C gets large.
4.2.4 Neural Network Classifier. Neural networks are constructed
from multiple layers of neuron, with neurons of the next layers
taking inputs from neurons in the previous layer, applying weights
to the input values, summing the values, applying an activation
function on the sum, and outputting a value. The weights of each
neuron connection are learned during the model training. This

Table 3: Classifier Modeling Times (seconds)

Model Training Classification
Naïve Bayes 0.0263 0.00933

Random Forest 1.309 0.294
SVM 1.825 0.00327

Neural Network 12.055 0.0657

classifier was constructed from a sequential network with hidden
layers containing 1000 nodes each.

The neural network was evaluated with different numbers of
layers and different activation functions. The depth of a neural
network has a large impact on the accuracy of the model since
deeper layers learn better intermediate information. The choice of
activation function is also critical to building a useful model.

Figure 5: Neural Network Classifier Metrics

Fig. 5 shows the performance of the neural network classifier.
Both the ReLU and SELU activation functions perform poorly. Mean-
while, the nonlinear tanh activation function with 8 hidden layers
perform best with an accuracy of 91.6% and an F1 score of 0.916.
This classifier gives the highest accuracy among those tested.

4.2.5 Training Time and Classification Time. Table 3 shows the
average training and classification times for the four types of clas-
sifiers. All the classifiers can be trained in a short amount of time,
and classification is near-instant for the input features provided to
the classifiers. Naïve Bayes is the fastest to train while the neural
network takes the longest to train since the multi-layered neural
network is a resource-intensive model.

5 CONCLUSION AND FUTUREWORK
We developed an automated classification tool for understand-

ing WebAssembly programs. The classifier leverages file and code
features to predict the program purpose. By testing different mod-
els to find the optimal one, we achieved a predictive accuracy of
91.6%. Further work on the system could use heuristics to explore
links that are most likely to contain WebAssembly as the current
system only scans a single URL. In addition, we plan to generalize
the classifier beyond the 11 identified categories by analyzing the
programs at function level. Finer-grained analysis such as modeling
the instructions used within functions would help discover new
use cases and improve the classifier precision.
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