
Jasmine: A Static Analysis Framework for Spring Core
Technologies

Miao Chen
chenmiao_nsrc@bupt.edu.cn
Beijing University of Posts and

Telecommunications
Beijing, China

Tengfei Tu∗
tutengfei.kevin@bupt.edu.cn
Beijing University of Posts and

Telecommunications
Beijing, China

Hua Zhang
zhanghua_288@bupt.edu.cn

Beijing University of Posts and
Telecommunications

Beijing, China

Qiaoyan Wen∗
wqy@bupt.edu.cn

Beijing University of Posts and
Telecommunications

Beijing, China

Weihang Wang
weihangw@usc.edu

University of Southern California
Los Angeles, USA

ABSTRACT
The Spring framework is widely used in developing enterprise
web applications. Spring core technologies, such as Dependency
Injection and Aspect-Oriented Programming, make development
faster and easier. However, the implementation of Spring core tech-
nologies uses a lot of dynamic features. Those features impose
significant challenges when using static analysis to reason about
the behavior of Spring-based applications. In this paper, we propose
Jasmine, a static analysis framework for Spring core technologies ex-
tends from Soot to enhance the call graph’s completeness while not
greatly affecting its performance. We evaluate Jasmine’s complete-
ness, precision, and performance using Spring micro-benchmarks
and a suite of 18 real-world Spring programs. Our experiments
show that Jasmine effectively enhances the state-of-the-art tools
based on Soot and Doop to better support Spring core technologies.
We also add Jasmine support to FlowDroid and discovered twelve
sensitive information leakage paths in our benchmarks. Jasmine is
expected to provide significant benefits for many program analyses
scenes of Spring applications where more complete call graphs are
required.

CCS CONCEPTS
• Software and its engineering→ Compilers; • Theory of com-
putation→ Program analysis.

KEYWORDS
static analysis, points-to analysis, Spring framework

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556910

ACM Reference Format:
Miao Chen, Tengfei Tu, Hua Zhang, QiaoyanWen, andWeihangWang. 2022.
Jasmine: A Static Analysis Framework for Spring Core Technologies. In
37th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3551349.3556910

1 INTRODUCTION
Java frameworks are software designed to make programming eas-
ier in Java. They provide collections of pre-written code used by
Java developers to build Java applications or web applications. The
Spring framework[7, 8], in particular, is the most popular Java
framework that is used in the vast majority of enterprise appli-
cations, including web services, microservices, and data-driven
systems. So far, there are more than 540,000 Spring-related projects
on Github[9]. The Java world is still a Spring-dominated world,
with over half of the market using Spring Boot[5].

Static program analysis is the analysis of computer software per-
formed without executing any programs and is often used to detect
security vulnerabilities and performance issues. In static analysis re-
search, Java has many the well-known research frameworks, such
as Soot[58], Doop[17], and WALA[25, 52]. Antoniadis et al.[13]
claim that these frameworks do not or only partially support core
technologies of Spring: Dependency Injection (DI) [3] and Aspect-
Oriented Programming (AOP)[1], thus leading to unsound analysis
results[39]. As far as we know, the literature rarely contains tech-
niques specifically for the Spring applications in static analysis and
often ignores the influence of Spring framework. IBM published
F4F[51] tomake taint analysis engines performmore accurate analy-
sis of web applications. Alibaba’s ANTaint[59] simulates framework
to enhance the capabilities of FlowDroid in enterprise applications.
JackEE[13] conducts pointer analysis for enterprise applications by
identifying entry points and processing variables related to injec-
tion objects. The call graph and the data-flow graph constructed
based on the above techniques ignore the Spring core technologies
and affect the accuracy of the results generated by software engi-
neering tools where call graphs are required. For example, existing
taint analysis tools based on these incomplete graphs cannot detect
information leakage paths in mall[6] and halo[4] projects (with
50k and 19k stars on Github, respectively, Section 5.4). The primary

https://doi.org/10.1145/3551349.3556910
https://doi.org/10.1145/3551349.3556910

ASE ’22, October 10–14, 2022, Rochester, MI, USA Miao et al.

reason is that these frameworks use pointer analysis that does not
support Spring core technologies.

Pointer analysis is a significant static analysis technology that
computes the possible values of pointer variables in a program[31,
34, 53]. Such information is essential for reasoning about call graph
and alias in object-oriented programs. Therefore, it is widely used
in software engineering tools, such as taint analysis[14, 29, 36],
program verification[26, 46], program debloating[28, 45], and bug
detection[19, 24, 47, 60]. However, Spring core technologies often
use configuration files, reflection, and dynamic proxy to implement
corresponding functions. These functions produce specific codes or
behaviors when the program runs, and such information is invisible
during static analysis[11, 32].

In this article, we provide Jasmine, a static analysis framework
for Spring applications. Static analysis tools based on Soot and
Doop, in concert with Jasmine, can produce a high-completeness,
high-precision static analysis of Spring programs. In summary, We
make the following contributions.
• We study two core technologies of Spring: DI and AOP. We di-
vided their effects in static analysis into two aspects, "explicit"
and "implicit", that help in explaining where to introduce
the effects in static analysis and why existing static analysis
methods are unsound (Section 2 and 3).
• We propose an approach to simulate Spring core technologies
in the level of intermediate representation (IR) and construct
the Jasmine framework. Jasmine parses Spring configuration
files to obtain the specific functions. According to this infor-
mation, Jasmine simulates the possible behaviors of Spring
core technologies (Section 4).
• We present a micro-benchmark and a real-world benchmark
containing eighteen Spring programs, which are used to evalu-
ate the capability of Jasmine. Jasmine can achieve high degrees
of completeness through taking advantage of modeling DI and
AOP. Jasmine also supports integration into the current state-
of-the-art static analysis tools based on Soot and Doop. With
the help of Jasmine, we implemented FlowDroid and found
twelve user information leakage paths in three real-world
Spring programs (Section 5).

2 BACKGROUND
We offer a gentle introduction to Java pointer analysis in Section 2.1.
In Section 2.2, we briefly describe two core technologies of Spring.

2.1 Pointer Analysis
Pointer analysis (points-to analysis) is a significant static analysis
technology that determines information on the values of pointer
variables during runtime[48]. Such information is essential for
reasoning about call graph and alias in object-oriented programs.
Therefore, it is widely used in software engineering tools. Pointer
sets describe the relations between variables and abstract objects.
We can compute a points-to relation

𝑝𝑡 ⊆ 𝑉𝑎𝑟 ×𝑂𝑏 𝑗

with Var being program variables set and Obj being as abstract
objects set. Abstract objects are represented as allocation sites, i.e.,
instructions that allocate objects (e.g., new in Java)[20].

Based on the rules that involved pointer expressions[12, 52],
pointer analysis can build the object flow graph (OFG)[55] and
call graph of a program. Although the literature is not entirely
consistent on high-level terminology, pointer analysis is a near-
synonym of alias analysis.

2.2 Spring Core Technologies
Spring core technologies[8] contain DI, AOP, Resources, i18n, Data
Binding, Type Conversion and SpEL. DI and AOP are the two tech-
nologies that significantly affect the completeness of static analysis
performed on Spring application. Hence, this paper only focuses
on DI and AOP.

1 @RequestMapping (" / u s e r ")
2 @Contro l l e r p u b l i c c l a s s U s e rCon t r o l l e r {
3 @Autowired U s e r S e r v i c e u s e r S e r v i c e ;
4 / / u s e r S e r v i c e = S i n g l e t o n F a c t o r y . g e tU s e r S e r v i c e Imp l () ;
5 / / u s e r S e r v i c e =new Use r S e r v i c e Imp l () ;
6 / / u s e r S e r v i c e =new UserServ i ce$$CGLIB () ;
7 @GetMapping (" / en t r y1 ")
8 pu b l i c vo id en t ry1 (S t r i n g pword) {
9 u s e r S e r v i c e . i n f o (pword) ;
10 }
11 }
12 @RequestMapping (" / admin ")
13 @Contro l l e r p u b l i c c l a s s AdminCont ro l l e r {
14 @Autowired U s e r S e r v i c e u s e r S e r v i c e ;
15 @GetMapping (" / en t r y2 ")
16 p r i v a t e vo id en t ry2 () {
17 P r i n t (u s e r S e r v i c e . getPwd ()) ;
18 }
19 }
20 / / @Scope (" p r o t o t ype ")
21 @Service c l a s s U s e r S e r v i c e Imp l implements U s e r S e r v i c e {
22 p r i v a t e s t a t i c S t r i n g pwd ;
23 pu b l i c S t r i n g i n f o (S t r i n g pword) {
24 t h i s . pwd = pword ;
25 invoke () ;
26 P r i n t (" pword : " +pword) ;
27 r e t u r n pword ;
28 }
29 pu b l i c vo id invoke () { . . . }
30 pu b l i c S t r i n g getPwd () { r e t u r n pwd ; }
31 }

Listing 1: Example of using Dependency Injection

1 @Aspect
2 @Component p u b l i c c l a s s LogAspect {
3 / / e x e cu t i on (∗ ∗ . . U s e r S e r v i c e Imp l . invoke (. .))
4 / / e x e cu t i on (∗ ∗ . . AdminCont ro l l e r . en t r y2 (. .))
5 @Around (" e x e cu t i on (∗ ∗ . . U s e r S e r v i c e Imp l . i n f o (. .)) ")
6 pu b l i c Ob j e c t doAround (P r o c e e d i n g J o i n P o i n t pd j) {
7 P r i n t (pd j . ge tArgs ()) ;
8 r e t u r n pd j . p roceed () ; / / Execu te t a r g e t method
9 }
10 @AfterReturn ing (r e t u r n i n g = " r e s " ,
11 va lue = " e x e cu t i on (∗ ∗ . . U s e r S e r v i c e Imp l . i n f o (. .)) ")
12 pu b l i c vo id r e t u r n i n g (J o i n P o i n t jp , Ob j e c t r e s) { . . . }
13 / / @Before , @After , @AfterReturn ing method
14 }

Listing 2: Example of using Spring AOP

2.2.1 Dependency Injection. "Inversion of Control (IoC), also known
as dependency injection (DI)"[8], is one of the core technologies of
the Spring framework. It is a process whereby objects define their
dependencies through factory method arguments, constructor argu-
ments, or properties that are set on the object instance after factory

Jasmine: A Static Analysis Framework for Spring Core Technologies ASE ’22, October 10–14, 2022, Rochester, MI, USA

(a) Running Listing 1 (without Spring AOP)

(b) Running Listing 1 and Listing 2 (with Spring AOP)

Fig. 1. Comparison of running with or without Spring AOP.
The execution sequence of (a) omits the complicated calling process
inside the Spring framework during the program runs.

method constructs or returns it. IoC container injects those depen-
dencies when creating the bean (the objects form the backbone of
the application and are managed by the Spring IoC container). The
container gets instructions on what objects to instantiate, configure,
and assemble by reading configuration.

Listing 1 shows that a Controller (which is the core element of
a Spring web application), named UserController, accepts user’s
incoming requests (in Line 8) via the URL "/user/entry1". Figure 1(a)
shows Listing 1 code execution sequence. In this example, the class
UserController and UserServiceImpl are annotated with @Controller
and @Service (Lines 2 and 21), respectively. Therefore, the IoC con-
tainer creates the beans of two classes and injects dependencies
according to the field annotated with@Autowired. When the pro-
gram runs, userService points to the object of UserServiceImpl, and
entry1 invokes info in UserServiceImpl (in Lines 9 and 23).

2.2.2 Aspect-Oriented Programming. Aspect-oriented programming
(AOP) is a technology that aims to increase modularity by allowing
the separation of cross-cutting concerns. Without modifying the
code, AOP adds additional behavior to existing code (an advice).
AOP allows adding behaviors that are not business logic (such as
logging) to a program. Spring AOP does not require a particular
compiler or compilation process. Instead, it is implemented in pure
Java and adds additional behavior to existing code by means of JDK
dynamic proxy[27] or CGLIB proxy[18].

The Spring AOP example, shown in Listing 2, describes how to
link aspects with the target method. Figure 1(b) shows the order
in which the codes of Listing 1 and 2 are executed together. Class
LogAspect is managed by the IoC container as a bean because it is
annotated with@Component. When the program is running, the
Spring framework scans the class annotated with @Aspect (Line
1) as an aspect, then parses the expression in @Around (Line 5)
to find the target object (in this case, the target class is UserServi-
ceImpl and the target method is info). Spring generates a dynamic
proxy method (UserServiceImpl$$CGLIB.info in Figure 1(b)) for the
target method and UserServiceImpl$$CGLIB.info calls the advice
methods (the method annotated with @Around, @Before, @After,
and@AfterReturning) in the order of 2○- 7○ illustrated in Figure 1(b).
Spring framework will generate a call path between pdj.proceed()
of Listing 2 and info of Listing 1 at runtime.

3 CAUSES OF INVALIDITY IN POINTER
ANALYSIS

The Spring framework has impact on static analysis based on
pointer analysis[32], which may lead to unsound results, etc. In this
section, we dissect how DI and Spring AOP impact on pointer anal-
ysis. Explicit impact refers to the case where the function call exists
in the application source code, whereas implicit impact means that
the calling relationships and data flows are hidden in framework
internals and can be only exposed at runtime.

3.1 Explicit Impact
In Section 2.1, we have seen that the goal of pointer analysis is
to compute an approximation of the set of program objects that a
pointer variable or expression can refer to. If the field is processed
by DI, pointer analysis treats it as uninitialized. For example, in
Listing 1, pointer analysis could not compute objects that userService
refers to and treated userService as a null pointer. Because of lacking
such information, the call edge between entry1 and info of class
UserServiceImpl is lost when building the call graph, and info is
considered unreachable. Therefore, taint analysis could not find a
leakage path (Line 26) based on this incomplete call graph.

Spring framework uses the singleton pattern to instantiate ob-
jects by default (similar to Line 4 in Listing 1) when executing DI,
which means that the bean (object) of the class is unique to the
whole program. When using the @Scope("prototype") in Line 20,
the Spring framework will use the prototype pattern and each allo-
cation is considered as a different bean (object) during DI (similar
to Line 5 in Listing 1). Existing points-to analysis process each
DI point with a prototype pattern, which ignores the impact of
singleton pattern on pointer analysis (alias analysis). For example,
when method entry1 of UserController initializes the field pwd of
UserServiceImpl by the parameter pword of info (Line 9 in Listing 1),
method entry2 in class AdminController will obtain the same value
by calling getPwd since both userService of Lines 3 and 14 point to
the same object at runtime.

3.2 Implicit Impact
As described in Section 2.2.2, because there are a lot of reflection
and dynamic proxies used in Spring framework, pointer analysis
cannot handle the application using spring AOP and the generated
call graph may lose the execution sequences in Figure 1(b). An
unsound call graph of the application’s core part may cause false
negative during static analysis. We could not detect the following
example using taint analysis based on the above call graph: entry1
passes the password information entered by the user to method
info, and then Line 7 in Listing 2 obtains and prints the password.

Spring AOP uses JDK dynamic proxy or CGLIB proxy to add
additional behavior to existing code (an advice) without modifying
the source code. Since there is no obvious hint in the source code,
static analysis tools don’t know how to handle these situations. We
dissect the mechanism behind this as follows.
• Due to the proxy-based nature of Spring’s AOP framework,
calls within the target object are not intercepted[8]. As de-
scribed in Section 2.2.2, we change the pointcut expression
of LogAspect to the comment in Line 3 of Listing 2. Spring
AOP generates a dynamic proxy method for invoke. In Line 25

ASE ’22, October 10–14, 2022, Rochester, MI, USA Miao et al.

Spring Program

JAR

Matching Rules

XML

Soot IR
generator

Modeling Spring AOP

Modeling DI

Detecting Entry Points

Modeling Other

<?xml version="1.0"
encoding="UTF-8"?
><beans xmlns="...">

public class AkAspect {
 // …
}

Spring XML
Configuration

Parse XML
Config

M
et

ho
d

Di
sp

at
ch

New IR(Jimple)

public class AkAspect {
 // …
}

Origin IR(Jimple)

① ②

Jasmine

Modeling Dynamic FeaturesIdentifying Spring Framework

Parse Anno
Config

Pointer Analysis

Call Graph

Taint Analysis

Bug Detection

……

Src

Fi
nd

 C
on

fig
Fig. 2. Overview of Jasmine

of Listing 1, info calls method invoke belonging to the same
class, so the dynamic proxy method was not called, and ad-
vice methods did not execute. This is the reason why some
interceptors that use AOP as permission checks cannot work
(the Permission in Table II).
• CGLIB creates a proxy class that does not contain private
or static methods of the superclass and does not initialize
any fields inherited by the superclass, including final fields.
Method entry2 in Listing 1 is a private entry point that can be
accessed via the URL address "/admin/entry2". Changing the
pointcut expression to the comment in Line 4 of Listing 2, field
userService in class AdminController$$CGLIB is a null pointer
and will cause a null pointer exception when we accessed
private method (the EntryPoint in Table II).

4 METHODOLOGY
This section introduces Jasmine: an approach to simulate the core
technologies of Spring Framework for solving the problems men-
tioned in Section 3 by instrumenting on Soot IR[58]. Figure 2 shows
the overview of Jasmine, which contains two components: Identi-
fying Spring Framework (1○ in Figure 2) and Modeling Dynamic
Features (2○ in Figure 2). The input of Jasmine is the origin IR, the
XML configuration file of the Spring application, and the Matching
Rules. After processing by Jasmine, the output is the new IR that
can describe DI and AOP.

TABLE I. Matching Rules

Name Example # of
Rules

Beans (class,"Lorg/springframework/.../Service;") 12
Protype (class,"Lorg/springframework/context/.../Scope;") 1
Entrys (class,"Lorg/springframework/.../Controller;") 4
EntryMethod (method,"Lorg/springframework/.../PostMapping;") 6
AOPs (class,"Lorg/aspectj/lang/annotation/Aspect;") 2
Pointcut (method,"Lorg/aspectj/lang/annotation/Pointcut;") 1
Advices (method,"Lorg/aspectj/lang/annotation/Around;") 5
Injects (field,"Lorg/springframework/.../Autowired;") 4

4.1 Identifying Spring Framework
4.1.1 Parsing Annotation. Soot first parses the JAR of a program un-
der test to generate origin IR. Jasmine takes the origin IR, the Spring
XML configuration file of the target application, and the Matching

Algorithm 1: ANNOTATION PROCESS
Input: 𝐽 𝑖𝑚𝑝𝑙𝑒𝐶𝑙𝑎𝑠𝑠 : the set of class jimple.
Output: 𝑆𝐵𝑒𝑎𝑛𝑠 : the set of Singleton Bean.

𝑃𝐵𝑒𝑎𝑛𝑠 : the set of Prototype Bean.
𝐸𝑃𝑀𝑒𝑡ℎ𝑜𝑑𝑠 : the set of entry method.

1 PBeans← {},SBeans← {},EPMethods← {};
2 foreach class ∈ 𝐽 𝑖𝑚𝑝𝑙𝑒𝐶𝑙𝑎𝑠𝑠 do
3 if Rule.Beans match class.anno then
4 if Rule.Protype match class.anno then
5 add class to PBeans;

6 else
7 add class to SBeans;

8 if Rule.Entrys match class.anno then
9 foreach method m of class do
10 if Rules.EntryMethod match m.anno then
11 add m to EPMethods;

12 if Rule.AOPs match class.anno then
13 AOPProcess(class) ; // calls Algorithm 2

Rules file as input to the Identifying Spring Framework module
(1○in Figure 2). We collected annotations related to DI, Spring AOP
and entry points from the Spring framework documentation[8],
and sorted them into Matching Rules as shown in Table I. Each rule
provides the scope and the Jimple IR of annotation. Algorithm 1
shows how to process the annotation and identify the function of
a method in a given program. The parsing process of the Spring
XML configuration is similar.

Three sets are initialized to empty in Line 1: the Beans set of
Singleton or Prototype pattern and the entry point methods. The
algorithm starts by iterating through all the application classes in
origin Soot IR (Line 2 in Algorithm 1), and obtaining the annotation
information on the class. The annotation of the class will match
with Beans, Entrys, and AOPs rules separately in Table I (Lines 3,
8, 12 in Algorithm 1). Specifically, Singleton and Prototype Beans
are added to the different sets if a class has prototype annotation
in Lines 4-7. For a class identified as entry points, Algorithm 1
analyses the annotations of each method in this class and places
the suitable methods into the EPMethods set (Lines 9-11). Then, the
set are output to the next module for subsequent processing.

4.1.2 Processing Spring AOP. In Algorithm 2, the variable targetM
and two sets are initialized in Line 1: targetM points to target

Jasmine: A Static Analysis Framework for Spring Core Technologies ASE ’22, October 10–14, 2022, Rochester, MI, USA

Names: 𝐴∈(𝑎...𝑧𝐴...𝑍$<>)∗
𝒏𝒂𝒎𝒆 (𝐴) Variables: 𝒏𝒂𝒎𝒆 (𝐴)

𝒗𝒂𝒓 (𝐴) Types: 𝒏𝒂𝒎𝒆 (𝐴)
𝒕𝒚𝒑𝒆 (𝐴)

Assignment: 𝒗𝒂𝒓 (𝐴) 𝒗𝒂𝒓 (𝐵)
𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒊𝒐𝒏(𝒂𝒔𝒔𝒊𝒈𝒏(𝐴,𝐵)) Allocation: 𝒗𝒂𝒓 (𝐴) 𝒕𝒚𝒑𝒆 (𝑇)

𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒊𝒐𝒏(𝒂𝒍𝒍𝒐𝒄 (𝐴,𝑇)) Return: 𝒗𝒂𝒓 (𝑅)
𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒊𝒐𝒏(𝒓𝒆𝒕𝒖𝒓𝒏(𝑅))

Invocation: 𝒗𝒂𝒓 (𝐵𝑎𝑠𝑒) 𝒏𝒂𝒎𝒆 (𝑆𝑖𝑔𝑛) 𝒗𝒂𝒓 (𝐴𝑟𝑔) 𝒗𝒂𝒓 (𝑅𝑒𝑡)
𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒊𝒐𝒏(𝒄𝒂𝒍𝒍 (𝐵𝑎𝑠𝑒,𝑆𝑖𝑔𝑛,𝐴𝑟𝑔,𝑅𝑒𝑡)) Expression: 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒊𝒐𝒏(𝐸)

𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒊𝒐𝒏(𝒆𝒙𝒑 (𝐸))

Class: 𝒏𝒂𝒎𝒆 (𝑁𝑎𝑚𝑒) 𝒕𝒚𝒑𝒆 (𝑆𝑢𝑝𝑒𝑟) 𝒗𝒂𝒓 (𝐹𝑖𝑒𝑙𝑑) 𝒇 𝒖𝒏(𝑆𝑖𝑔𝑛)
𝒄𝒍𝒂𝒔𝒔 (𝑁𝑎𝑚𝑒,𝑆𝑢𝑝𝑒𝑟,𝐹𝑖𝑒𝑙𝑑,𝑆𝑖𝑔𝑛) Function: 𝒏𝒂𝒎𝒆 (𝑆𝑖𝑔𝑛) 𝒗𝒂𝒓 (𝐴𝑟𝑔) 𝒑𝒓𝒐𝒈𝒓𝒂𝒎 (𝐵𝑜𝑑𝑦)

𝒇 𝒖𝒏(𝑆𝑖𝑔𝑛,𝐴𝑟𝑔,𝐵𝑜𝑑𝑦)

Insert: 𝒆𝒙𝒑 (𝐸1) 𝒇 𝒖𝒏(𝑆𝑖𝑔𝑛) 𝒆𝒙𝒑 (𝐸2)
𝒊𝒏𝒔𝒆𝒓𝒕 (𝑆𝑖𝑔𝑛,𝐸1, [𝑏𝑒𝑓 𝑜𝑟𝑒 |𝑎𝑓 𝑡𝑒𝑟]𝒔𝒊𝒕𝒆 (𝐸2)) Site: 𝒆𝒙𝒑 (𝐴)

𝒔𝒊𝒕𝒆 (𝐴) Program: 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒊𝒐𝒏(𝐼) 𝒑𝒓𝒐𝒈𝒓𝒂𝒎 (𝑃)
𝒑𝒓𝒐𝒈𝒓𝒂𝒎 (𝐼 ;𝑃)

Fig. 3. Jasmine Syntax

Algorithm 2: AOP PROCESS
Input: 𝑐𝑙𝑎𝑠𝑠 : class jimple.
Output: 𝐴𝑂𝑃𝑀𝑎𝑝 : a map of target and advice methods.

1 AOPMap← {}, AdviceList← {}, targetM← null;
2 foreach method m of 𝑐𝑙𝑎𝑠𝑠 do
3 if Rules.Pointcut match m.anno then
4 targetM← parse expression;

5 else if Rules.Advices match m.anno then
6 add m to AdviceList;

7 if targetM ≠ null then
8 add 𝐴𝑂𝑃𝑀𝑎𝑝 .get(targetM) to AdivceList;
9 replace 𝐴𝑂𝑃𝑀𝑎𝑝(targetM) with Sort(AdviceList);

method of Spring AOP, AdviceList represents a set of advice meth-
ods that will enhance the target method’s behavior, and AOPMap,
which denotes the mapping relations between target method of
Spring AOP and a set of related advice methods[8]. The algorithm
iterates through all annotations on the method in class of the In-
put. If the annotation in Line 3 is a pointcut expression, then the
algorithm parses the pointcut expression to find the target method
and assigns it to targetM. Otherwise, advice methods are stored
in the AdviceList. In Lines 7-9, if the targetM is not empty, get the
advice methods in AOPMap with the targetM key and add them to
the AdviceList. Algorithm 2 sorts the AdviceList according to the
value of@Order, class name, and the order of annotations@Around,
@Before, @AfterReturning, and @After. Finally, Algorithm 2 saves
targetM and AdviceList as key-value in AOPMap, and then outputs
AOPMap to the next module.

4.2 Modeling Dynamic Features
In this section, we describe how to manipulate code in the level of
intermediate representation to model the Spring framework’s core
technologies. The Method Dispatch receives the output from the
Identifying Spring Framework module and passes each set to its
corresponding sub-module within the Modeling Dynamic Features
module (2○in Figure 2).

4.2.1 Jasmine Syntax. We use the syntax shown in Figure 3 to
describe how Jasmine processes the core technologies of Spring.
The above and below of each rule in Figure 3 are constraints and
IR operation commands, respectively. Each parameter in the IR
operation command must strictly abide by the constraints. For
example, for the Insert rule, when we want to obtain the insert
operation command for inserting statement 𝐸1 before (or after)
the 𝐸2 statement of the Sign method, we should provide the insert

statement 𝐸1, the target method Sign, and the target statement 𝐸2
under the constraints.

We explain the contents of Figure 3 in more detail below:
• Names, Variables, and Types are Jasmine’s three basic rules.
Jasmine uses Names to represent unique identifiers such as
class names, method names, and variable (field) names. Vari-
ables and Types respectively indicate the unique identifier
in name instruction as a variable (field) or type.
• Allocation, Assignment, Invocation, Return and Expres-
sion are Jasmine’s core operating rules. These rules cover
Jasmine’s operations for the method body during the simu-
lation. Most of them are self-explanatory but some deserve
an explanation. The instruction operation indicates that the
rule of Program and Expression prerequisites can only be
operations marked with instruction. Both Assignment and
Allocation follow the rule of assigning values from right
to left (A = B or A = new T). Jasmine uses the Invocation
operation command to express Ret = Base.Sign(Arg) statement,
where Arg and Ret are optional.
• Jasmine uses Program, Function, and Class operation rules
to construct method bodies, functions, and synthetic classes.
Noted that, according to the needs of the Jasmine simulation
process, we must provide a parent class or interface (Super)
for the synthetic class.
• Insert and Site operation rules are used for Jasmine’s in-
sert operation. Jasmine uses Site to find the line number of
expression A in the method body of Sign.

4.2.2 Modeling DI. The DI Modeling module receives the PBeans
and SBeans from Method Dispatch. It replaces the classes in the
two sets that are the targets of Spring AOP with the synthetic
proxy classes implemented in Section 4.2.3. Algorithm 3 shows
the modeling of dependency injection. The algorithm starts by
iterating through all the application classes in origin Soot IR, then
tClas, SBeans and PBeans are passed as arguments to the function
DIProcess (Lines 1-2). The JSyn.xx indicates that Soot IR is operated
according to the rules provided by Jasmine Syntax in Figure 3.
Function generateSingleton (Line 10) generates a singleton factory,
named SingletonFactory (Line 13), whose static fields are all the
elements in the SBeans. After that, Jasmine uses the Jsyn.alloc
command to initialize all static fields in the <clinit> method of
SingletonFactory, and function getFunComm constructs a getter
method for each static field in Lines 15-16 and 17-19, which is used
to simulate DI by returning a global singleton object.

Finally, Jasmine scans fields, constructors, and setter methods
annotated with special annotations (such as@Autowired,@Inject,

ASE ’22, October 10–14, 2022, Rochester, MI, USA Miao et al.

Algorithm 3: DI PROCESS
Input: 𝑆𝐵𝑒𝑎𝑛𝑠 : the set of Singleton Bean.

𝑃𝐵𝑒𝑎𝑛𝑠 : the set of Prototype Bean.
𝐽 𝑖𝑚𝑝𝑙𝑒𝐶𝑙𝑎𝑠𝑠 : the set of class jimple.

1 foreach class 𝑡𝐶𝑙𝑎 of 𝐽 𝑖𝑚𝑝𝑙𝑒𝐶𝑙𝑎𝑠𝑠 do
2 DIProcess(𝑡𝐶𝑙𝑎, 𝑆𝐵𝑒𝑎𝑛𝑠 , 𝑃𝐵𝑒𝑎𝑛𝑠);

3 Function DIProcess(𝑡𝐶𝑙𝑎, 𝑆𝐵𝑒𝑎𝑛𝑠 , 𝑃𝐵𝑒𝑎𝑛𝑠)
4 generateSingleton(𝑆𝐵𝑒𝑎𝑛𝑠);
5 fa← 𝑡𝐶𝑙𝑎.field.anno, fd← 𝑡𝐶𝑙𝑎.field, iMet← fd.<init>;
6 if Rule.Injects match fa then
7 if fd.type not in PBeans then
8 iMet← SingletonFactory.get(fd.type);

9 insertComm(𝑡𝐶𝑙𝑎.<init>, iMet, return exp,"before");

10 Function generateSingleton(𝑆𝐵𝑒𝑎𝑛𝑠)
11 vars← JSyn.var(SBeans.value.name);
12 mets← JSyn.name("get" + SBeans.value);
13 JSyn.class("SingletonFactory", None, [vars], mets);
14 JSyn.fun(<clinit>, None, JSyn.alloc(vars, SBeans.value););
15 foreach sclass ∈ 𝑆𝐵𝑒𝑎𝑛𝑠 do
16 getFunComm(sclass);

17 Function getFunComm(𝑐𝑙𝑎𝑠𝑠 , 𝑓 𝑖𝑒𝑙𝑑)
18 body← JSyn.program(JSyn.return(𝑓 𝑖𝑒𝑙𝑑));
19 return JSyn.fun("get" + 𝑐𝑙𝑎𝑠𝑠 .name, None, body);

20 Function insertComm(𝑇𝑀 , 𝐼𝑀 , 𝑒𝑥𝑝𝑟 , 𝐵𝑜𝑟𝐴)
21 insertCall← JSyn.call(𝐼𝑀 .name, 𝐼𝑀 .Sign, 𝐼𝑀 .param);
22 insertSite← JSyn.site(JSyn.exp(𝑒𝑥𝑝𝑟));

// insert 𝐼𝑀 into 𝑇𝑀 before/after 𝑒𝑥𝑝𝑟

23 JSyn.insert(𝑇𝑀 , insertCall, 𝐵𝑜𝑟𝐴, insertSite);

etc.) and gets the declared class about variable or parameter (Line 6
in Algorithm 3). The DI Modeling module finds the implementation
of these classes in the PBeans or SBeans, and initializes them ac-
cording to the prototype or singleton pattern (Lines 7-9). Function
insertComm uses JSyn.call to generate a call statement for the
insertion method IM and locates the statement expr at the location
of the target method TM. After that, use JSyn.insert to insert the
statement calling IM before the statement returns in the TM body.

4.2.3 Modeling Spring AOP. Spring AOP weaves enhanced code
into the target class by means of JDK dynamic proxy or CGLIB
proxy when the program runs. In this section, we describe how to
implement spring AOP behavior by simulating CGLIB proxy. The
CGLIB proxy is implemented by generating the corresponding byte-
code directly after the program runs so that information, including
method calls and data flows, is not available when performing static
analysis on a project that uses Spring AOP.

Algorithm 4 demonstrates Jasmine modeling Spring AOP that
weaves enhanced code into target methods. Jasmine simulates
CGLIB proxy behavior by generating a synthetic subclass of the
TClass, named TClass$$CGLIB using the approach in Line 3. Class
TClass$$CGLIB declares and initializes two private fields of type
TClass and aopClass, respectively (Lines 19-20). Lines 21-24 illus-
trate the generation of proxy methods with the same signature for
each inheritable method, and Jasmine decides to assign the proxy
method to proxyM according to whether the method is the target
method. The variables curMet and preMet of Line 4 in Algorithm 4

Algorithm 4:WEAVE PROCESS
Input: 𝐴𝑂𝑃𝑀𝑎𝑝 : a map of target and advice methods.

𝑡𝑎𝑟𝑔𝑒𝑡𝑀 : target method.
1 TClass← targetM.getClass, aopClass← AOPMap.getValClass;
2 Function weaveProcess()
3 proxyClassComm(TClass);
4 curMet← proxyM, preMet← proxyM;
5 foreach aopMet ∈ AOPMap.get(targetM) do
6 aa← aopMet.Anno, am← aopMet, site← "before";
7 if @𝐴𝑟𝑜𝑢𝑛𝑑 match aa then
8 preMet← curMet, aroundM← clone and modify am;
9 if aroundM is not proxyM then
10 site← "after";

11 insertComm(curMet, aroundM, target exp, site);
12 curMet← aroundM;

13 else if @𝐵𝑒𝑓 𝑜𝑟𝑒 match aa then
14 insertComm(curMet, aroundM, target exp, site);

15 else if @𝐴𝑓 𝑡𝑒𝑟 or @𝐴𝑓 𝑡𝑒𝑟𝑅𝑒𝑡𝑢𝑟𝑖𝑛𝑔 match aa then
16 insertComm(preMet, am, return exp, site);

// calls the insertComm function of Algorithm 3

17 insertComm(curMet, targetM, return exp, site);

18 Function proxyClassComm(𝑐𝑙𝑎𝑠𝑠)
19 JSyn.class(𝑐𝑙𝑎𝑠𝑠 .name+"$$CGLIB", 𝑐𝑙𝑎𝑠𝑠 , [target, aspect],

𝑐𝑙𝑎𝑠𝑠 .methods);
20 JSyn.fun(<init>, None, JSyn.alloc(target, TClass);

JSyn.alloc(aspect, aopClass););
21 foreach oriMethod ∈ 𝑐𝑙𝑎𝑠𝑠 do
22 proxyFun← funComm(oriMethod);
23 if oriMethod is targetM then
24 proxyM← proxyFun;

25 Function funComm(𝑚𝑒𝑡)
26 if𝑚𝑒𝑡 is targetM then
27 callStat← JSyn.call(𝑚𝑒𝑡 .name,𝑚𝑒𝑡 .Sign,𝑚𝑒𝑡 .param);

28 returnStat← JSyn.return(𝑚𝑒𝑡 .return);
29 body← JSyn.program(callStat; returnStat);
30 return JSyn.fun(𝑚𝑒𝑡 .name,𝑚𝑒𝑡 .param, body);

are assigned using the synthetic proxy method proxyM generated
above. AdviceList corresponding to the target method is obtained
from the AOPMap output in Section 4.1 and iterated. After that,
algorithm begin to handle different enhancement operations.

First, Algorithm 4 clones aopMet and assigns it to aroundM when
aopMet is a method annotated with@Around. This step refers to the
compiler optimization by means of function cloning[21, 43, 44]. In
order to facilitate the parameter flowing from the proxy method to
the target method, we add all the formal parameters of targetM as
additional parameters to the method aroundM (Line 8 in Algorithm
4). Second, Jasmine inserts the call statement of aroundM (Lines
9-11 in Algorithm 4) into the body of the proxy method. Finally,
aroundM is assigned to curMet, and the algorithm starts the next iter-
ation. Similarly, Lines 13-16, Jasmine inserts the statement that calls
method annotated with @Before, @After or @AfterReturning into
curMet or preMet, respectively. When all methods in AdviceList are
processed, Jasmine inserts the call statement of the target method
targetM into the body of curMet (Line 17 in Algorithm 4).

Jasmine: A Static Analysis Framework for Spring Core Technologies ASE ’22, October 10–14, 2022, Rochester, MI, USA

TABLE II. Spring micro-benchmark and results. ID 1-4 are Spring features analysis and ID 5-6 are scenes analysis. 𝐽 𝑎𝑠𝑚𝑖𝑛𝑒𝑑 and 𝐽 𝑎𝑠𝑚𝑖𝑛𝑒𝑠

represent Jasmine’s Doop version and Soot version, respectively. P. indicates precision and R. indicates recall.

ID Benchmark Exp
Doop Soot

JackEE Default 𝐽 𝑎𝑠𝑚𝑖𝑛𝑒𝑑 SPARK CHA 𝐽 𝑎𝑠𝑚𝑖𝑛𝑒𝑠

P.(%) R.(%) F1(%) P.(%) R.(%) F1(%) P.(%) R.(%) F1(%) P.(%) R.(%) F1(%) P.(%) R.(%) F1(%) P.(%) R.(%) F1(%)

1 EntryPoint 4 50 100 66.67 50 100 66.67 100 100 100 0 0 0 50 100 66.67 100 100 100
2 DI(Singleton) 11 100 54.60 70.63 0 0 0 100 72.73 84.21 0 0 0 0* 0* 0* 81.82 81.82 81.82
3 DI(Prototype) 7 0 0 0 0 0 0 100 100 100 0 0 0 0* 0* 0* 77.78 100 87.50
4 Spring AOP 8 0 0 0 0 0 0 100 87.50 93.33 0 0 0 0 0 0 100 87.50 93.33
5 InfoLeak 7 0 0 0 — — — 33.33 71.43 45.45 0 0 0 100 28.57 44.44 100 100 100
6 Permission 1 0* 0* 0* 0* 0* 0* 0* 0* 0* 0 0 0 0 0 0 100 100 100
7 Reachable Methods 158 92.09 81.01 86.20 81.68 98.73 89.40 100 87.34 93.24 94.87 23.42 37.57 92.48 77.85 84.54 100 81.01 89.51
8 Application Edges 346 95.86 67.05 78.91 96.32 68.21 79.86 97.38 96.53 96.95 100 4.62 8.83 66.37 86.71 75.19 97.01 93.64 95.30
0*: These analysis tools produce 0 as the output if they do not support detection. We use "0*" to indicate such cases and differentiate them from 0 caused by false alarms.

4.2.4 Detecting Entry Points. The SpringWebmodel-view-controll-
er (MVC) framework is designed around a DispatcherServlet that
dispatches requests to handlers. The default handler is based on the
@Controller and @RequestMapping. Unlike traditional Java applica-
tions that use the main method as the entry point, an application
based on the Spring MVC framework has multiple entry points.
The entry point (named Controller in Spring MVC) is annotated
with@Controller and@RequestMapping. Our approach identifies
possible entry points according to annotations and XML configura-
tion. If the target class handled by Spring AOP is a controller, the
actual entry point method is the synthetic proxy method generated
by the mock CGLIB as described in Section 4.2.3.

It is impossible to call the private entry point methods directly
because of Java’s encapsulation principle. Jasmine constructs a
synthetic method call_Entry for each controller and makes them
invoke all entry point methods in controller. Meanwhile, Jasmine
instantiates parameter objects of each entry point in the method
call_Entry. Finally, the method main of Application calls call_Entry
of all classes. Jasmine will also construct a dummyMain class similar
to FlowDroid as the starting point for static analysis, because some
applications do not have a main method.

4.2.5 Modeling Other. Jasmine synthesizes a mock object to ad-
dress the situation that the specific implementation class is dy-
namically generated on the bytecode or obtained in third-party lib
packages through the reflection. For example, the implementation
of the interface method generated by dynamic runtime (in particu-
lar the mapper method in Mybatis), the data flow affected by the
JoinPoint object in the application, and the parameters initialization
of the entry point method.

4.3 Threats to Validity
Threats to the validity of our study could come from some aspects.
In addition to DI and AOP, the remaining Spring core features also
affect the completeness of the call graph (yet not as significant as
DI and AOP). Jasmine will gradually support them in the future.
Jasmine only focuses on Spring programs. Some Java applications
are developed without using Spring framework, and Jasmine cannot
improve the performance of static analysis for these applications.
Despite these limitations, Jasmine has made great efforts to supple-
ment the construction of application call graph. We believe Jasmine

can provide significant benefits for many program analysis scenes
of Spring applicationwheremore complete call graphs are required.

5 EVALUATION
In this section, we investigate the following research questions for
evaluating our Jasmine framework.

RQ1. How does Jasmine support the core technologies of the
Spring framework compared to the state-of-the-art techniques?

RQ2. How well does the pointer analysis tool perform when
combined with Jasmine on the Spring application?

RQ3. What is the effect that Jasmine brings to existing taint-
analysis tools on the analysis result?

5.1 Experimental Setup
Implementation. We have implemented Jasmine as a stand-alone
open-source tool, available on Github1. Benefiting from manipulat-
ing code in the level of intermediate representation, Jasmine pro-
vides support for different static analysis frameworks and each static
analysis tool, including Soot[58], Doop[17], and so on[14, 29, 30, 50],
can cooperate with Jasmine to perform relevant analysis on the ap-
plications based on the Spring framework. Interacting with existing
tools is very easy, since the output of Jasmine is just IR. For exam-
ple, we only need to modify the Doop’s Fact-generator to enable it
to support applications using the Spring framework. In addition,
Jasmine can cooperate with the well-known taint analysis tool,
FlowDroid[14], to support taint analysis for Spring applications.

Benchmarks.We presented a Spring micro-benchmark2 to mea-
sure Jasmine’s support for Spring core technologies with eight met-
rics. We selected the first 4 metrics (ID 1-4 in Table II) according
to the Spring official documents[8] and other metrics (ID 5-8 in
Table II) are chosen as that are commonly used in the literature
and related work[13, 14, 27]. Table III lists the real-world bench-
mark programs used for evaluation. All the benchmark programs
are open-source programs using the Spring framework: the first 4
entries are from the JackEE benchmarks[13] and the remains are
selected on Github based on the number of forks and stars. We
believe that the number of forks and stars is a good selection cri-
terion because they may indicate these projects’ popularity. Most
of our selected applications have at least two years of history and
1Publicly available at https://github.com/SpringJasmine/Jasmine
2Publicly available at https://github.com/SpringJasmine/Spring-micro-benchmarks

https://github.com/SpringJasmine/Jasmine
https://github.com/SpringJasmine/Spring-micro-benchmarks

ASE ’22, October 10–14, 2022, Rochester, MI, USA Miao et al.

still under maintenance by the developers currently. As another
selection criterion, applications that use different versions of the
Spring framework can prove the generality of Jasmine’s analysis
results. The earliest release time of the Spring framework version
used in benchmark applications is December 2015 (jeesite), and the
latest release time is October 2021 (ruoyi).

All the experiments were carried out on a Docker environment
which deployed on a machine with Intel(R) Xeon(R) CPU E5-2650
v4 @ 2.20GHz (4 x 12 core) and 128GB of RAM.

5.2 RQ1: The Core Technologies Support and
Completeness Verification

To answer RQ1, we evaluate eight metrics on the Spring micro-
benchmark as illustrated in Table II. ID 1-4 are four Spring tech-
nologies analysis metrics (the number of the methods that receive
user input, the number of dependency injections in singleton or
prototype mode, and the number of examples that use Spring AOP),
and ID 5-6 are two metrics that analyse the scenes that influenced
by Spring core technologies (the number of paths that leak pass-
words and the number of times that permission verification fails),
ID 7 is a method reachability analysis (the number of reachable
application methods), and ID 8 is a call graph construction analysis
metric (the number edges of application). We use Precision and
Recall in Table II to show the support of each tool for the Spring
core technologies.

5.2.1 The Core Technologies Support. In order to avoid differences
in results due to different framework implementations, we com-
pared the Soot (𝐽𝑎𝑠𝑚𝑖𝑛𝑒𝑠) and Doop (𝐽𝑎𝑠𝑚𝑖𝑛𝑒𝑑) versions of Jasmine
with existing tools, respectively. Doop group compares 𝐽𝑎𝑠𝑚𝑖𝑛𝑒𝑑 ,
Default (Doop framework contains aweb-app logic), and JackEE[13].
Soot group compares 𝐽𝑎𝑠𝑚𝑖𝑛𝑒𝑠 , SPARK[34], and CHA[22].

Context-insensitive pointer analysis does not contextually distin-
guish heap allocations. Therefore, the result of context-insensitive
analysis in prototype mode is similar to that in singleton mode.
To differentiate the two modes, we evaluated metrics 2-3 in Ta-
ble II using a 2-object-sensitive pointer (2obj) analysis (with one
context element for heap objects)[33, 40, 41]. Because related de-
pendency packages of the context-sensitive framework Paddle[35]
in Soot were unavailable, we used TURNER[30], a selective context-
sensitive pointer analysis tool, to evaluate 𝐽𝑎𝑠𝑚𝑖𝑛𝑒𝑠 . It also demon-
strated that Jasmine can support selective context-sensitive pointer
analysis for Spring applications. The rest of the metrics were evalu-
ated with context-insensitive. We manually added entry points for
Soot-SPARK and Soot-CHA to make evaluations smoothly.

Precision, Recall and F1 for ID 1-4 show that Jasmine has better
support for Spring core technologies than other tools. Metrics 2
and 4, in both versions of Jasmine, have false positives and false
negatives because we did not consider the situation that bean given
different id is treated as different objects in singleton pattern and
the AOP can optionally be declared using an interface. In the Doop
group, we used P/Taint[29] to evaluate information leakage. The
"—" indicates time out. The results show that although there exist
some false positives, 𝐽𝑎𝑠𝑚𝑖𝑛𝑒𝑑 can still detects some correct infor-
mation leakage paths. We analyzed the datalog[2] rule of P/Taint
and found that P/Taint introduced related false positives when
processing Integer.parseInt and Integer.valueOf. We have discussed

0 20 40 60 80 100 120 140 160 180 200

JackEE

Default

Jasmine

SPARK

CHA

Jasmine

True Postive False Negative False Postive

S

d

Fig. 4. Reachable method.

related issues with the P/Taint maintainer and hope to solve this
problem in the future. In the scenes analysis of Soot group, using
our taint analysis and authority verification tools, 𝐽𝑎𝑠𝑚𝑖𝑛𝑒𝑠 well
supports sensitive information leakage and permission checking of
Spring applications. CHA is a call graph construction algorithm that
uses the class hierarchy to compute which method can be invoked
by objects of each class type. CHA generates a call graph with low
accuracy (may introduce false edges to the call graph)[59]. When
the information leakage detection tool uses CHA as the call graph
construction algorithm and satisfies the conditions that the entry
points are manually added and the process of receiving request
information being not carried out within the Spring framework, it
can detect the leakage path described in Section 3.1.

5.2.2 Completeness Verification. To compare application edges
and reachable methods on Spring micro-benchmark call graphs
constructed by different tools, we used Grays[42] to obtain the
runtime call stack information of Spring micro-benchmark. We
compared the call graph constructed by the static analysis tool with
that constructed dynamic, then we filled metrics 7-8 in Table II and
drew Figure 4.

In Figure 4, though we manually added entry points for CHA and
SPARK to make evaluations smoothly, they still produced high false
negatives. Default configuration yields the best true positive result
but has the highest false positives compared to others. We analyzed
its Datalog[2] rules and found that Default extensively uses the
mock approach, where all classes generate a mock object and then
call themselves, resulting in most methods being reachable except
the method generated by dynamic runtime.

Table II and Figure 4 illustrate the results which ignore some
calling relationships between application methods, since JackEE
directly uses the Controller and AOP methods as the entry points
to guide pointer analysis and construct call graph. Fortunately,
Jasmine fills in the connection and data flow between related meth-
ods by synthesizing the methods generated at runtime, so that the
static analysis tools can analyse Spring applications based on the
call graphs. Indeed, Jasmine has false negatives because we did not
consider AOP declared using an interface in the framework, we
will support this in the future.

5.3 RQ2: The Enhancements of Jasmine brings
to JackEE

To answer RQ2, we extended JackEE with Jasmine, named Jas_Jack-
EE, and took advantage of Jasmine’s support for Spring core tech-
nologies. We selected 18 open-source projects on Github as the
production-benchmark (mall project contains three modules and

Jasmine: A Static Analysis Framework for Spring Core Technologies ASE ’22, October 10–14, 2022, Rochester, MI, USA

TABLE III. Production-benchmark and results. The mall project contains three modules and FEBS-Cloud contains two modules.

Benchmark Stars Fork Spring
Version

Application
KLoC

Application
Classes

Total
Classes

Edge Count (Total) Reachable Method (Total)

JackEE Jas_JackEE JackEE Jas_JackEE

pybbs 1.3k 616 5.2.2 9.3 181 27,717 1,168 (220,711) 2,896 (322,428) 438 (32,207) 715 (42,522)
shopizer 2.1k 2k 5.2.11 90.4 1,339 55,054 13,358 (117,507) 25,678 (129,253) 6,254 (21,574) 6,610 (22,259)

SpringBlog 1.6k 706 4.3.14 1.5 100 18,493 854 (192,412) 1,015 (248,564) 202 (26,691) 226 (33,040)
WebGoat 4.6k 2.6k 5.3.9 15.8 96 12,829 307 (177,557) 372 (227,995) 107 (25,823) 119 (31,620)
mall-admin

50.1k 21.5k 5.2.6
60.6 413 18,321 3,140 (161,982) 13,114 (247,618) 1,336 (26,141) 1,947 (36,302)

mall-search 55.2 271 25,691 806 (149,274) 1,370 (222,414) 305 (22,623) 313 (30,574)
mall-portal 58.6 339 16,148 2,224 (149,390) 5,864 (226,382) 949 (23,485) 1,171 (32,630)

FEBS-Cloud-auth 1.6k 742 5.2.1 4.6 112 18,999 826 (297,283) 1,266 (305,624) 267 (38,477) 327 (39,426)
FEBS-Cloud-system 5.1 134 22,202 1,914 (247,001) 6,165 (276,454) 438 (32,393) 725 (35,966)

jeesite 7.7k 5.9k 4.1.9 25.4 292 20,365 8,685 (324,703) 9,651 (329,086) 1,373 (45,071) 1,688 (45,566)
FEBS-Shiro 5.5k 2.2k 5.3.3 7.2 173 23,923 3,691 (359,274) 8,628 (389,031) 758 (45,054) 1,097 (47,896)
ForestBlog 3.1k 1.4k 4.3.19 3.4 81 10,163 1,106 (128,689) 1,604 (129,284) 369 (16,415) 458 (16,613)
Jeecg-boot 23.9k 9.2k 5.2.10 36.5 549 33,862 26,218 (515,079) 41,559 (560,324) 2,028 (59,300) 3,680 (62,878)
My-Blog 2.1k 672 5.1.2 3.1 59 10,051 548 (99,302) 1,232 (140,676) 130 (16,630) 264 (22,245)
Halo 19.2k 6.6k 5.3.8 28.6 532 30,764 35,653 (519,291) 40,902 (552,997) 2,861 (63,404) 3,599 (66,981)
ruoyi 1.6k 657 5.3.12 21.5 291 23,789 6,858 (438,831) 9,464 (463,446) 1,421 (54,168) 1,938 (56,969)

favorites-web 4.5k 1.7k 5.0.4 6.3 94 11,510 1,233 (95,834) 2,490 (216,665) 499 (16,802) 582 (29,678)
Vblog 6.1k 2.7k 5.2.6 1.1 27 10,474 182 (114,506) 334 (142,507) 98 (18,609) 131 (23,007)
vhr 21.7k 9k 5.3.1 3.7 91 15,648 729 (207,844) 977 (247,123) 267 (30,552) 317 (35,274)

MCMS 1.2k 624 5.2.12 2.3 36 17,524 3,346 (166,721) 3,681 (213,510) 153(23,955) 199 (30,688)
SpringBlade 5.5k 1.2k 5.3.8 6.2 377 25,219 4,122 (368,985) 6,054 (376,163) 11,74(46,546) 1477 (47,116)

TABLE IV. Analysis added edges of Jas_JackEE

Benchmark DI EntryPoint AOP Mocking Spurious

pybbs 74.07% 27.26% 0.85% 7.60% 19.98%
shopizer 30.89% 53.91% 0.98% 6.43% 13.07%

SpringBlog 40.00% 47.37% 0.00% 19.47% 7.89%
WebGoat 22.62% 53.57% 0.00% 15.48% 0.00%
mall-admin 5.51% 6.61% 75.33% 11.99% 4.79%
mall-search 18.65% 3.29% 56.27% 32.13% 3.76%
mall-portal 10.49% 7.20% 78.57% 15.97% 4.97%

FEBS-Cloud-auth 16.11% 19.84% 76.42% 26.13% 20.04%
FEBS-Cloud-system 3.87% 6.85% 49.14% 8.53% 20.77%

jeesite 30.95% 51.31% 0.00% 12.48% 9.36%
FEBS-Shiro 4.89% 9.28% 46.16% 3.74% 23.77%
ForestBlog 40.19% 68.65% 2.12% 24.23% 0.00%
Jeecg-boot 10.07% 14.32% 47.43% 9.50% 12.75%
My-Blog 53.87% 34.81% 0.69% 20.72% 8.70%
Halo 15.21% 8.43% 58.07% 15.30% 22.11%
ruoyi 15.07% 38.10% 41.58% 14.02% 1.67%

favorites-web 43.42% 35.49% 41.01% 25.06% 9.12%
Vblog 41.83% 61.44% 0.00% 30.72% 0.00%
vhr 38.79% 56.20% 0.00% 26.39% 0.00%

MCMS 12.57% 40.11% 18.98% 12.83% 19.25%
SpringBlade 7.44% 27.49% 36.65% 6.04% 1.45%

FEBS-Cloud contains two modules), shown in Table III, to evaluate
the analysis effect of the modified JackEE for Spring applications.

5.3.1 Completeness. Columns 5-7 in Table III are the basic proper-
ties of the production-benchmark: Application KLoC is the number
of lines of Java code in the application, and Total Classes contains
all the classes about the application (Application Classes) and de-
pendent libraries. Edge Count and Reachable Method is the number
of edges and reachable methods related to the application gener-
ated by conducting a context-insensitive pointer analysis on Total

Classes. In the place marked in red, the programs crashed during
the analysis of Total Classes, and the results are produced by only
running the Application Classes. The columns of Edge Count and
Reachable Method in Table III show that Jas_JackEE uses the facts
generated by Jasmine’s to achieve a remarkable increase in the
number of reachable methods and calling edges compared to native
JackEE.

1 pu b l i c c l a s s SmsServ i ce { . . .
2 pu b l i c boo l ean sendSms (. . .) { . . .
3 Map responseMap= J s o nU t i l
4 . j s onToOb j e c t (r e sponse . ge tDa ta () ,Map . c l a s s) ;
5 i f (responseMap . g e t (" Code ") . e qu a l s ("OK")) r e t u r n t r u e ;
6 }
7 }

Listing 3: Example of cause spurious call edges

Because of space limitation, we have computed the proportion
of application edges introduced by Modeling Dynamic Features
modules (DI, EntryPoint, AOP and Mocking in Table IV) out of
the edges produced by Jas_JackEE, excluding edges generated by
JackEE. Table IV shows that Jas_JackEE adds many Spring AOP-
related edges and dynamic proxy methods on six benchmarks(mall,
FEBS-Cloud, FEBS-Shiro, Jeecg-boot, Halo and ruoyi). Both pybbs
and My-Blog define dependency injection via specific annotations,
which is ignored by JackEE, and Jasmine considers these cases
when simulating in the intermediate representation level. The col-
umn of Spurious indicates the proportion of spurious edges in the
added edges. We analyzed and found that these spurious edges are
caused by the same kind of problems. We take the spurious edges in
pybbs[10] project as an example. In Listing 3, Jasmine handles DI so
that the method SmsService.sendSms becomes reachable in pointer
analysis. When analyzing the sendSms method, pointer analysis
found that the responseMap in Line 5 points to an Object object.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Miao et al.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

pybbs
shopizer

SpringBlog
WebGoat

mall-admin
mall-search
mall-portal
FEBS-Cl-auth
FEBS-Cl-sys

jeesite
FEBS-Shiro
ForestBlog
Jeecg-boot
My-Blog
Halo
ruoyi

favorites-web
Vblog
vhr

MCMS
SpringBlade

JackEE reachable Jas_JackEE reachable

Fig. 5. App methods reachability.

Therefore, when analyzing the call statement of get("Code") and
equals("OK") in Line 6, pointer analysis generated many spurious
edges to guarantee the completeness of the results. We mark the
edges in added edges of Jas_JackEE as spurious with the following
two features. First, the edges that have the same calling method,
and the called methods have the same method signature but do
not belong to the same class. Second, the edges that the number of
them is far more than the number of corresponding call statements
in the source code.

Figure 5 shows the completeness of JackEE and Jas_JackEE’s
reachable app methods, measured by the proportion of the number
of reachable app methods in the number of all app methods. Com-
pared Jas_JackEE with JackEE, the completeness of the reachable
method increased by 28.14% (for My-Blog) at most and 0.21% (for
mall-search) at least. Because there is no effective dynamic analy-
sis tool that can automatically obtain the reachable methods and
calling edges of Spring projects, we could not accurately compute
the precision and recall of Jasmine in real-world Spring programs.

5.3.2 Performance. Since Jasmine finds more edges and reachable
methods to JackEE, more resource consumption is inevitable. Figure
6 shows the performance of both JackEE and Jas_JackEE. As we can
see, time and memory only increase less than 10% while Jas_JackEE
analyzes most of the projects and improves the coverage for call
graph and reachable method identification. For projects that heavily
using Spring AOP and dependency injection (pybbs, mall, halo,
etc.), although it takes longer time and more memory space to
analyse than native JackEE, it brings higher coverage. We believe
that compared with the increased completeness of the constructed
call graph, the overhead introduced by Jasmine is acceptable.

5.4 RQ3: The Benefits of Jasmine Brings to
FlowDroid

In this section, we intend to evaluate the benefits Jasmine brings to
FlowDroid. First, we used FlowDroid to perform taint analysis on
Java projects without changing its origin logic. Then, we combined
FlowDriod with Jasmine (denoted as FlowDroid_Jasmine3, using
SPARKmode for analysis). At last, we evaluated FlowDroid_Jasmine
by comparing it with FlowDroid_CHA and FlowDroid_SPARK on
the production-benchmark. We chose the user’s input as sources
and writing methods as sinks, then conducted the above three

3Publicly available at https://github.com/SpringJasmine/FlowDroid_Jasmine

0

500

1,000

1,500

2,000

2,500

3,000

py
bb
s

sh
op
ize
r

Sp
rin
gB
log

W
eb
Go
at

m
all
-a
dm
in

m
all
-s
ea
rch

m
all
-p
ro
ta
l

FE
BS
-C
l-a
ut
h

FE
BS
-C
l-s
ys

jee
sit
e

FE
BS
-S
hir
o

Fo
re
stB
log

Je
ec
g-
bo
ot

M
y-
Bl
og
Ha
lo
ru
oy
i

fav
or
ite
s-
we
b
Vb
log vh

r

M
CM
S

Sp
rin
gB
lad
e

tim
e

(s
)

JackEE
Jas_JackEE

(a) executing time

0

5

10

15

20

25

py
bb
s

sh
op
ize
r

Sp
rin
gB
log

W
eb
Go
at

m
all
-a
dm
in

m
all
-s
ea
rch

m
all
-p
ro
ta
l

FE
BS
-C
l-a
ut
h

FE
BS
-C
l-s
ys

jee
sit
e

FE
BS
-S
hir
o

Fo
re
stB
log

Je
ec
g-
bo
ot

M
y-
Bl
og
Ha
lo
ru
oy
i

fav
or
ite
s-
we
b
Vb
log vh

r

M
CM
S

Sp
rin
gB
lad
e

m
em

 (
G

B)

JackEE
Jas_JackEE

(b) usage of memory

Fig. 6. Comparison of performance for benchmarks.

modes on the production-benchmark and obtained the results as
shown in Table V, which can be used to illustrate the advantages
that Jasmine brings to the static analysis of real-world programs.
As we can see, based on the same pair of sources and sinks, Flow-
Droid_Jasmine detects more taint paths than FlowDroid_CHA and
FlowDroid_SPARK. We manually compared the taint paths in Table
V with the source code to verify that these taint paths are valid.
By analyzing the results, we summarized two reasons for this phe-
nomenon. Firstly, Jasmine supports pointer analysis to process
Spring core technologies and patch relevant data flow information.
Secondly, in Spring MVC, controllers use class HttpServlet, entity
class, or string as formal parameters to accept incoming requests.
Their initialization and process of receiving request information
are carried out within the Spring framework. FlowDroid_CHA and
FlowDroid_SPARK could not detect these as sources, and Jasmine
can solve these problems as mentioned in Section 4.2.5.

We found that FlowDroid_Jasmine can detect forty-four sensi-
tive information leakage paths in nine projects. These leakage paths
write the user’s sensitive information into a log file or print it to the
console. After deploying the project and running the functions cor-
responding to these paths, we excluded thirty-two paths that may
be blocked-up by control flow statements and manually verified the
existence of the other twelve paths (shown with red background
in Table V). These leaks are all related to behaviors generated by
the core technologies of Spring. We have submitted these security
defects to the issue of the Github project or emailed it to the author.

We also evaluated P/Taint, an information-flow analysis tool
based on Doop, on benchmark projects. However, whether using
JackEE or Jasmine in collaboration with P/Taint, there are many
false positives in the detection results that come with heavy effi-
ciency cost. The false positive is the inaccurate information-flow

https://github.com/SpringJasmine/FlowDroid_Jasmine

Jasmine: A Static Analysis Framework for Spring Core Technologies ASE ’22, October 10–14, 2022, Rochester, MI, USA

TABLE V. Taint analysis results for FlowDroid. "-" on the left is
the number of taint paths. On the right is the number of information
leakage paths. In parentheses is the number of leakage paths verified
after executing programs.

Benchmark FlowDroid
_CHA

FlowDroid
_SPARK

FlowDroid
_Jasmine

pybbs 3 - 0 0 - 0 7 - 0
shopizer 61 - 8 20 - 0 97 - 8

SpringBlog 0 - 0 0 - 0 0 - 0
WebGoat 0 - 0 0 - 0 0 - 0
mall-admin 2 - 0 0 - 0 41 - 6(3)
mall-search 0 - 0 0 - 0 5 - 0
mall-portal 1 - 0 0 - 0 20 - 6(3)

FEBS-Cloud-auth 2 - 0 0 - 0 17 - 0
FEBS-Cloud-system 3 - 0 0 - 0 16 - 4

jeesite 10 - 2 5 - 2 19 - 4
FEBS-Shiro 0 - 0 0 - 0 0 - 0
ForestBlog 4 - 0 0 - 0 4 - 0
Jeecg-boot 5 - 0 5 - 0 65 - 4
My-Blog 0 - 0 0 - 0 0 - 0
Halo 0 - 0 0 - 0 31 - 4(4)
ruoyi 0 - 0 0 - 0 65 - 4

favorites-web 0 - 0 0 - 0 20 - 4(2)
Vblog 0 - 0 0 - 0 0 - 0
vhr 0 - 0 0 - 0 0 - 0

MCMS 0 - 0 0 - 0 0 - 0
SpringBlade 4 - 0 4 - 0 4 - 0

between some methods in Java core library that generated by P/-
Taint. We think that how to improve the accuracy of P/Taint is a
topic worthy of study.

6 RELATEDWORK
In this section, we mainly discuss related work that leverages the id-
ioms of Java web frameworks to address the challenges of analyzing
web applications.

6.1 Static Reflection Analysis
Several static analyses have resolved calls that use dynamic features.
Solar[37, 38] is the first reflection analysis that allows its sound-
ness to be reasoned about when some assumptions are met and
produces significantly improved under-approximations otherwise.
Barros et al.[15] present static analysis for Java reflection. This
work helps to resolve where control flows and what data is passed
and improve the precision of downstream analyses. Smaragdakis
et al.[49] present an approach for handling reflection in a pointer
analysis based on the combination of string-flow and pointer anal-
ysis augmented with modeling of partial string flow. Fourtounis
et al.[27] observe that the dynamic proxy API is stylized enough
to permit static analysis and show how the semantics of dynamic
proxies can be modeled straightforwardly as logical rules in the
Doop. We analyze the source code of the Spring framework and find
that the above patterns rarely occur in framework implementations.
Moreover, frameworks are difficult to analyze for reasons beyond
their use of reflection and dynamic proxies. Jasmine models Spring
core technologies instead of analyzing them to avoid scalability or
precision loss due to their complexity.

6.2 Framework Analysis
Whole-program Analysis. Dietrich et al.[23] generate a driver
that supplies such an entry method for Java EE web applications
to overcome the challenges of identifying entry points by pro-
cesses XML configuration files, annotations, and JSPs. Using the
information in configuration files, particularly Android[14, 16],
has been considerable work on improving analysis precision and
sound for framework-based applications. JackEE[13] also intro-
duces techniques and general concepts for identifying andmodeling
the entry points of enterprise application in a largely framework-
independent way. John et al.[54] present Concerto, a system for
analyzing framework-based applications by soundly combining con-
crete interpretation at the framework implementations and abstract
interpretation at the application code. Jasmine not only focuses on
identifying entry points, but also simulates the Spring core tech-
nologies on the Soot IR to achieve a complete analysis of Spring
applications. Jasmine also supports integration into the current
state-of-the-art static analysis tools based on Soot and Doop.

Demand-driven Analysis. TAJ[57] is a taint analysis tool and
addresses various attack vectorswith techniques to handle reflective
calls, flow through containers, nested taint, and issues in generat-
ing valuable reports. IBM published F4F[51], a system for effective
taint analysis of framework-based web applications. It supports
WAFL language to model framework and process configuration
files in Java EE that taint analysis engines can use to perform more
accurate analysis of web applications. Andromeda[56] is an analy-
sis tool that computes data-flow propagations on demand through
constructs call graph lazily. It resolves virtual calls according to an
interprocedural type-inference. ANTaint[59] addresses the prob-
lems that applications make heavy use of libraries, native methods,
and enterprise-specific frameworks in FlowDroid[14]. It improves
scalability by expanding the call graph and applying taint propaga-
tion on demand for libraries. However, they are specifically geared
towards taint analysis and their modeling is incomplete. Jasmine
can provide the ability to model all value-flow in the program,
which is completely different from the above approaches to model
information flow.

7 CONCLUSION
With the widespread use of the Spring Framework in enterprise ap-
plications, it is impractical to ignore it for static analysis. We present
Jasmine, a static analysis framework for the Spring programs. Jas-
mine successfully handles the fundamental problems of static anal-
ysis for the Spring core technologies by manipulating code in the
level of Soot IR. Our evaluation on Spring micro-benchmarks and
real-world Spring programs demonstrate that Jasmine makes static
analysis and call graph more complete. In addition, by combining
Jasmine with FlowDroid, we discover twelve sensitive information
leakage paths in three open-source projects. We believe that these
results establish Jasmine as a new sweet spot in the well-established
static analysis for Spring programs.

ACKNOWLEDGMENTS
We would like to thank anonymous reviewers for their insightful
comments. This work is supported by Beijing Advanced Innovation
Center for Future Blockchain and Privacy Computing.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Miao et al.

REFERENCES
[1] 2021. Aspect-oriented programming. https://en.wikipedia.org/wiki/Aspect-

oriented_programming. Accessed July 28, 2021.
[2] 2021. Datalog. https://en.wikipedia.org/wiki/Datalog. Accessed July 28, 2021.
[3] 2021. Dependency-injection. https://en.wikipedia.org/wiki/Dependency_

injection. Accessed July 28, 2021.
[4] 2021. Halo Project. https://github.com/halo-dev/halo. Accessed July 28, 2021.
[5] 2021. jvm-ecosystem-report-2021. https://snyk.io/jvm-ecosystem-report-2021/.

Accessed July 31, 2021.
[6] 2021. Mall Project. https://github.com/macrozheng/mall. Accessed July 28, 2021.
[7] 2021. Spring Boot. https://spring.io/projects/spring-boot. Accessed July 28, 2021.
[8] 2021. Spring Framework. https://spring.io/projects/spring-framework. Accessed

July 28, 2021.
[9] 2021. Spring Projects. https://github.com/search?l=Java&q=Spring&type=

Repositories. Accessed July 28, 2021.
[10] 2022. pybbs Project. https://github.com/tomoya92/pybbs. Accessed Feb 14, 2022.
[11] Karim Ali, Xiaoni Lai, Zhaoyi Luo, Ondrej Lhoták, Julian Dolby, and Frank

Tip. 2019. A study of call graph construction for JVM-hosted languages. IEEE
transactions on software engineering (2019).

[12] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-
ming language. Ph.D. Dissertation. Citeseer.

[13] Anastasios Antoniadis, Nikos Filippakis, Paddy Krishnan, Raghavendra Ramesh,
Nicholas Allen, and Yannis Smaragdakis. 2020. Static analysis of Java enterprise
applications: frameworks and caches, the elephants in the room. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 794–807.

[14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[15] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo
d’Amorim, and Michael D Ernst. 2015. Static analysis of implicit control flow: Re-
solving java reflection and android intents (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 669–679.

[16] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. 2015. Droidel:
A general approach to Android framework modeling. In Proceedings of the 4th
ACM SIGPLAN International Workshop on State of the Art in Program Analysis.
19–25.

[17] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and applications.
243–262.

[18] cglib. 2019. cglib-project. https://github.com/cglib/cglib.
[19] Satish Chandra, Stephen J Fink, and Manu Sridharan. 2009. Snugglebug: a

powerful approach to weakest preconditions. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 363–
374.

[20] David R Chase, Mark Wegman, and F Kenneth Zadeck. 1990. Analysis of pointers
and structures. ACM SIGPLAN Notices 25, 6 (1990), 296–310.

[21] Dibyendu Das. 2003. Function inlining versus function cloning. ACM SIGPLAN
Notices 38, 6 (2003), 23–29.

[22] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming. Springer, 77–101.

[23] Jens Dietrich, François Gauthier, and Padmanabhan Krishnan. 2018. Driver
Generation for Java EE Web Applications. In 2018 25th Australasian Software
Engineering Conference (ASWEC). IEEE, 121–125.

[24] Julian Dolby, Mandana Vaziri, and Frank Tip. 2007. Finding bugs efficiently with
a SAT solver. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. 195–204.

[25] Stephen J. Fink et al. 2019. T.J. Watson Libraries for Analysis (WALA). http:
//wala.sourceforge.net.

[26] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. 2008.
Effective typestate verification in the presence of aliasing. ACM Transactions on
Software Engineering and Methodology (TOSEM) 17, 2 (2008), 1–34.

[27] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018. Static analy-
sis of java dynamic proxies. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 209–220.

[28] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal system call specialization for attack surface reduction. In 29th
{USENIX} Security Symposium ({USENIX} Security 20). 1749–1766.

[29] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint
analysis. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017),
1–28.

[30] Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue. 2021. Accelerating object-
sensitive pointer analysis by exploiting object containment and reachability. In

35th European Conference on Object-Oriented Programming (ECOOP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[31] Vini Kanvar and Uday P Khedker. 2016. Heap abstractions for static analysis.
ACM Computing Surveys (CSUR) 49, 2 (2016), 1–47.

[32] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. 2017. Challenges for
static analysis of java reflection-literature review and empirical study. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
507–518.

[33] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making context-
sensitive points-to analysis with heap cloning practical for the real world. ACM
SIGPLAN Notices 42, 6 (2007), 278–289.

[34] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using S
park. In International Conference on Compiler Construction. Springer, 153–169.

[35] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the benefits of context-
sensitive points-to analysis using a BDD-based implementation. ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 18, 1 (2008), 1–53.

[36] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280–291.

[37] Yue Li, Tian Tan, and Jingling Xue. 2015. Effective soundness-guided reflection
analysis. In International Static Analysis Symposium. Springer, 162–180.

[38] Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and analyzing java
reflection. ACM Transactions on Software Engineering and Methodology (TOSEM)
28, 2 (2019), 1–50.

[39] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: A manifesto. Commun.
ACM 58, 2 (2015), 44–46.

[40] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2002. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing and analysis.
1–11.

[41] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2005. Parameterized
object sensitivity for points-to analysis for Java. ACM Transactions on Software
Engineering and Methodology (TOSEM) 14, 1 (2005), 1–41.

[42] oldmanpushcart. 2019. greys-anatomy. https://github.com/oldmanpushcart/
greys-anatomy.

[43] Dmitry Petrashko, Vlad Ureche, Ondřej Lhoták, and Martin Odersky. 2016. Call
graphs for languages with parametric polymorphism. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 394–409.

[44] Gabriel Poesia and Fernando Magno Quintão Pereira. 2020. Dynamic dispatch
of context-sensitive optimizations. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1–28.

[45] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. 2020. Blankit
library debloating: Getting what you want instead of cutting what you don’t.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 164–180.

[46] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R Gross. 2012. Stati-
cally checking API protocol conformance with mined multi-object specifications.
In 2012 34th International Conference on Software Engineering (ICSE). IEEE, 925–
935.

[47] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: Fast and precise sparse value flow analysis for million lines
of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 693–706.

[48] Yannis Smaragdakis and George Balatsouras. 2015. Pointer analysis. Foundations
and Trends in Programming Languages 2, 1 (2015), 1–69.

[49] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. 2015. More sound static handling of Java reflection. In Asian Symposium on
Programming Languages and Systems. Springer, 485–503.

[50] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-
sensitive data-flow analysis using synchronized pushdown systems. Proceedings
of the ACM on Programming Languages 3, POPL (2019), 1–29.

[51] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and
Ryan Berg. 2011. F4F: taint analysis of framework-based web applications. In Pro-
ceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications. 1053–1068.

[52] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav.
2013. Alias analysis for object-oriented programs. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification. Springer, 196–232.

[53] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis:
modeling the heap by merging equivalent automata. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
278–291.

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Datalog
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://github.com/halo-dev/halo
https://snyk.io/jvm-ecosystem-report-2021/
https://github.com/macrozheng/mall
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-framework
https://github.com/search?l=Java&q=Spring&type=Repositories
https://github.com/search?l=Java&q=Spring&type=Repositories
https://github.com/tomoya92/pybbs
https://github.com/cglib/cglib
http://wala.sourceforge.net
http://wala.sourceforge.net
https://github.com/oldmanpushcart/greys-anatomy
https://github.com/oldmanpushcart/greys-anatomy

Jasmine: A Static Analysis Framework for Spring Core Technologies ASE ’22, October 10–14, 2022, Rochester, MI, USA

[54] John Toman and Dan Grossman. 2019. Concerto: a framework for combined
concrete and abstract interpretation. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[55] Paolo Tonella. 2005. Reverse engineering of object oriented code. In Proceedings.
27th International Conference on Software Engineering, 2005. ICSE 2005. IEEE,
724–725.

[56] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. 2013. Andromeda: Accurate and scalable security analysis of web
applications. In International Conference on Fundamental Approaches to Software
Engineering. Springer, 210–225.

[57] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: effective taint analysis of web applications. ACM Sigplan Notices 44, 6
(2009), 87–97.

[58] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[59] Jie Wang, YunguangWu, Gang Zhou, Yiming Yu, Zhenyu Guo, and Yingfei Xiong.
2020. Scaling static taint analysis to industrial SOA applications: a case study
at Alibaba. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1477–1486.

[60] Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang Wang,
Xuandong Li, and Guoqing Harry Xu. 2021. Chianina: an evolving graph system
for flow-and context-sensitive analyses of million lines of C code. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 914–929.

	Abstract
	1 Introduction
	2 BackGround
	2.1 Pointer Analysis
	2.2 Spring Core Technologies

	3 CAUSES OF INVALIDITY IN POINTER ANALYSIS
	3.1 Explicit Impact
	3.2 Implicit Impact

	4 Methodology
	4.1 Identifying Spring Framework
	4.2 Modeling Dynamic Features
	4.3 Threats to Validity

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: The Core Technologies Support and Completeness Verification
	5.3 RQ2: The Enhancements of Jasmine brings to JackEE
	5.4 RQ3: The Benefits of Jasmine Brings to FlowDroid

	6 Related Work
	6.1 Static Reflection Analysis
	6.2 Framework Analysis

	7 Conclusion
	Acknowledgments
	References

