
AdJust: Runtime Mitigation of Resource Abusing
Third-Party Online Ads

Weihang Wang
University at Buffalo

Buffalo, New York, USA
weihangw@buffalo.edu

I Luk Kim
Purdue University

West Lafayette, Indiana, USA
kim1634@purdue.edu

Yunhui Zheng
IBM T.J. Watson Research Center

Yorktown Height, New York, USA
zhengyu@us.ibm.com

Abstract—Online advertising is the most critical revenue
stream for many Internet companies. However, showing ads on
websites comes with a price tag. Since website contents and third-
party ads are blended together, third-party ads may compete with
the publisher contents, delaying or even breaking the rendering
of first-party contents. In addition, dynamically including scripts
from ad networks all over the world may introduce buggy scripts
that slow down page loads and even freeze the browser. The
resulting poor usability problems lead to bad user experience
and lower profits. The problems caused by such resource abusing
ads are originated from two root causes: First, content publishers
have no control over third-party ads. Second, publishers cannot
differentiate resource consumed by ads from that consumed by
their own contents. To address these challenges, we propose
an effective technique, AdJust, that allows publishers to specify
constraints on events associated with third-party ads (e.g., URL
requests, HTML element creations, and timers), so that they can
mitigate user experience degradations and enforce consistent ads
experience to all users. We report on a series of experiments
over the Alexa top 200 news websites. The results point to the
efficacy of our proposed techniques: AdJust effectively mitigated
degradations that freeze web browsers (on 36 websites), reduced
the load time of publisher contents (on 61 websites), prioritized
publisher contents (on 166 websites) and ensured consistent
rendering orders among top ads (on 68 websites).

Index Terms—online ads, defective ads, resource abusing,
performance degradation, mitigation

I. INTRODUCTION

Modern websites deliver sophisticated contents and provide
full-fledged functionalities thanks to the recent advance of
web technologies such as HTML5 and JavaScript. Similar
to the common practice in traditional software development,
web developers make use of third-party utilities that offer
dedicated and professional services. They can add various
services into their websites by incorporating a few bootstrap
snippets provided by the third-party service providers without
worrying about the complexity and scalability issues in the
development and maintenance of the underlying services.

Among such third-party services, online ads are the most
ubiquitous mashups nowadays. Today, over 14.3 million web-
sites use Google’s online advertising networks Google Ad-
Sense [13] and over 2.2 million websites participate Ama-
zon’s affiliation marketing program Amazon Associates [4]
to make money by displaying ads on their web pages. In
fact, online advertising has become the most critical revenue
stream for many Internet companies. Website owners sell ad

space through advertising platforms to monetize their websites
and get potential leads. For example, Google provides an ad
serving services platform called DoubleClick [12], which is
widely deployed on many popular websites due to its ease of
use and broad coverage. To make use of the services, website
developers only need to include div elements to specify ad
space and a few JavaScript snippets provided by DoubleClick
in their websites. The additional contents loaded by the scripts
will take care of the rest ad delegations on the fly.

Despite the benefits, there is a price to pay if advertisements
take excessive resource to display. Since website contents and
third-party ads are blended together in browsers, third-party
ads may compete with the contents owned by content publish-
ers, delaying the rendering of first-party contents. Additionally,
in the current ad networks, an ad slot may go through an
intricate chain of delegations until the final ad is delivered.
Dynamically including scripts from ad networks all over the
world may introduce buggy ad scripts that slow down the page
rendering and even freeze the browser. Cybercriminals even
target ad networks to inject CPU-draining cryptocurrency min-
ing scripts, which exacerbates the resource abusing problems.
The resulting poor usability leads to bad user experiences and
lower profits: for an e-commerce site making $0.1M per day,
a 1-second page delay can potentially cost $2.5M in lost sales
each year [18].

We have observed a number of such resource abusing
problems on real world websites. To name a few, a news article
page on www.cnn.com takes around 19 seconds to render the
contents including ads, while the article without ads loads
within just 5 seconds. The overwhelming majority of the time
are spent on ad trackers and advertising networks. A defective
video ad on www.chicagotribune.com makes tens of thousands
of URL requests within 20 seconds and eventually freezes the
entire browser.

The problems caused by resource abusing ads are originated
from two root causes: First, content publishers have no control
over third-party advertisements. Second, publishers cannot
differentiate resource consumption of ads from their own
contents. In many cases, content publishers even do not have
a reliable way to detect such client-side violations. Despite
recent advances in improving web page performance and
increasing ad bidding efficiency, there is a lack of practical yet
systematic techniques to enable content publishers to control

resource consumptions by ads or establish performance-related
agreements. Thus, in this paper, we present AdJust as the first
step in tackling these challenges. We focus on a content pub-
lisher oriented approach, with the goal of effectively mitigating
resource abusing ads and consistently delivering better user
experiences. In particular, our contributions are as follows:
• We propose a system that allows website developers to

specify constraints on resource consumption for third-party
ads.

• We develop a novel technique AdJust to monitor and
regulate resource abusing ads on the fly.

• We propose a measurement system to quantify resource
abusing problems (in particular, performance degradation
and priority inversions) caused by ads.

• Our evaluation on Alexa top 200 news websites shows that
AdJust is highly effective in mitigating resource abusing
ads that freeze browsers and degrade user experiences.

II. MOTIVATION

We use two real world examples to show (a) how ads
delay publisher contents, and (b) how defective ads degrade
performance.

A. Ads Delay First-Party Contents

Figure 1 shows the screenshots of loading a baseball video
on www.washingtontimes.com. The web page contains a hand-
ful of media contents. Since the page starts to load, the page
header and a video player render at 3.0 second and 4.5 second
respectively. The visitor assumes the baseball video will start
to play soon. However, about one second later, two Google
ads appear first. After another three seconds, an interactive
animated ad displays, delaying the video player from playing
the video. Eventually, the baseball video starts to play after
14.5 seconds. In this case, the third-party ads compete with
first-party contents on computing resources. In reality, many
visitors would have already gotten frustrated and left the
website to visit alternative sites.

Our Solution: Prioritizing First-Party Content. To mitigate
this problem, we propose to prioritize first-party content by
instrumenting the web page. Specifically, we delay all ads by
intercepting events that send ad requests, only proceeding to
request ads once the baseball video has been loaded. As shown
in Figure 2, after intentional delays were introduced for low
priority ads, the baseball video starts to play at 7.5 second,
much earlier than before. Moreover, although all ads were
delayed, they were still able to show up in a timely manner
(each with a 2 2.5 seconds delay).

B. Defective Ads Freeze the Browser

By including third-party ads, publishers are exposed to po-
tential risks of delivering defective ads to their customers. Fig-
ure 3 shows a defective video ad on www.chicagotribune.com
that makes tens of thousands of URL requests, quickly freezing
the browser.

Initially, the video player sends requests to a predefined
list of partner servers to request advertisements. Each partner

server either responds with an actual ad, or redirects the video
player to the next downstream ad server(s). This procedure
continues until a valid ad is delivered or a predetermined
timer expires. On this website, we observed a buggy ad script
intensively issued a large number of requests. Particularly, we
visited this website on a modern laptop with 2.8 GHz CPU
processor and stable 20 Mbps network speed. The defective ad
has sent tens of thousands of URL requests within 20 seconds,
which made the CPU usage quickly jump to 100% and the
browser freeze within a minute.

As shown in Figure 4, the video ad loads in the following
steps:
• Steps 1–3: The video player sent ad requests to layer1

servers, one at a time. It first requested ads from server
sx.streamrail.net [22]. This server did not have a suitable ad,
so it replied with an empty ad (1). The player proceeded
to other servers until it reached vid.springserve.com (2),
which replied with a wrapper script vd0.2.88.1.js [2]
(3), as well as a list of 214 downstream ad servers. This
wrapper script is used to handle the messages between the
video player and the 214 layer2 servers.

• Steps 4–6: The player then requested ads from layer2
servers (4). The 10th server ads.adaptv.advertising.com
instructed the player to load script jsvpaid.js [1] which
was supposed to be the wrapper script for another layer of
servers (5 , 6). However, in this message, no additional
servers were provided.

• Steps 7–13: Because the player cannot fetch ads along the
chain introduced by Ad Server 10, it moved on to Ad Server
11 (7). Recall that in Step 6, vd0.2.88.1.js invokes
functions in jsvpaid.js via indirect function calls, in an
attempt to request ads from additional servers. However, due
to a buggy implementation in vd0.2.88.1.js, the call
targets were not properly reset. As a result, starting from Ad
Server 11, all delegations still went through jsvpaid.js
(8 , 11), which kept triggering exception events (9 , 12).
As such, the browser was busy with handling exceptions
and eventually froze within a minute when the CPU usage
reached 100%.

Our Solution: Regulating Offensive URL Requests. In this
example, a layer1 ad server redirected the video player to hun-
dreds of additional servers. Such many redirections introduced
a large number of network requests and intensive JavaScript
executions, which eventually halted the entire browser. To
mitigate the resource abusing issue, we limit the requests sent
by this ad. In particular, given that ads are usually loaded
via AJAX requests, we instrument the open() method of
XMLHttpRequest objects. If too many AJAX requests were
sent in a short time period, additional requests will be delayed.
By limiting the number of URL requests, we were able to
browse the website without noticeable delays.

C. Our Approach
As shown in previous examples, resource abusing ads

substantially delay first-party contents and significantly de-
grade user experience. To solve these problems, we propose

3.0s 4.5s 5.5s 6.0s 8.5s 14.5s

Fig. 1. The timeline of loading a baseball video on www.washingtontimes.com. Two Google ads appeared at 6.0s and an animated ad was displayed at 8.5s.
Finally, the baseball video was loaded and started to play at 14.5s.

3.0s 4.5s 7.0s 8.0s 8.5s 10.5s

Fig. 2. The timeline of loading a baseball video on www.washingtontimes.com with intentional delays. The baseball video started at 7.0s. Then, two Google
ads appeared at 8.5. Finally, the animated ad was displayed at 10.5s. First-party contents were rendered faster and loaded before third-party ads.

Fig. 3. A defective video ad on www.chicagotribune.com.

Ad Video Player

Ad Server
sx.streamrail.net

Ad Server
ioms.bfmio.com

Ad Server
vid.springserver.com

Video Ad Script
vd0.2.88.1.js

Ad Server 1 Ad Server 10
ads.adaptv.advertising.com

Video Ad Script
jsvpaid.js

Ad Server 200

1 2

3

54

6

Ad Server 11

7

9

10

12

Layer1

Ad Servers

Layer2

Ad Servers

8
11

Fig. 4. Video ad loading on www.chicagotribune.com.

a novel runtime technique that allows publishers to specify
regulation policies on each third-party ad to control resource
consumption. Policies can be “load the top ad earlier than the
bottom ad” (constraints for priorities between ads) and “the
number of URL requests an ad can send per second should
be no more than x” (constraints for resource consumption).
Once publishers have created regulation policies, they only
need to add a tiny JavaScript snippet and transform the web
page. The rest of the regulation is handled by the AdJust
runtime. On the client side, AdJust runtime enforces the rules
on resource consumption and the loading orders of ads. AdJust
is persistent and robust in enforcing the rules during the
entire life-cycle of third-party ads, including layers of nested
frames and dynamically generated contents which are common
practices in advertising services.

With AdJust, publishers can (1) define constraints on
priorities and execution of resource-consuming events (e.g.,
HTTP requests, HTML element creations, exceptions caused
by third-party ads etc.) and (2) persistently regulate resource
consumption caused by ads to mitigate user experience degra-
dations and enforce consistent ads experience to all users.

III. DESIGN

A. Overview

Figure 5 shows the overview of AdJust. It has two phases:
(1) Offline Web Page Transformation (Figure 5-a) and (2)
Runtime Regulation (Figure 5-b).

Offline Web Page Transformation. For each ad, content
publishers define the expected service quality by specifying
resource constraints. For instance, a publisher can specify
“the maximum AJAX request rate allowed” by annotating
resource constraints within an ad slot (normally embedded in
<iframe>). The resource constraints are then translated to
JavaScript code by the Source Code Transformer. The source
code transformer inserts the compiled constraints into the
publisher’s web pages, as well as including the AdJust Runtime
to enforce runtime regulation.

Runtime Regulation. AdJust runtime interposes JavaScript
APIs that generate resource-consuming events. When such
events are invoked, they are not executed immediately. In-
stead, they are enqueued into the Event Queue (1) which
maintains multiple queues for events with different priorities.
Resource Regulator is the core component of AdJust runtime.
It repeatedly fetches events from the event queue (2) and
ensures that each fetched event does not violate the resource
constraints specified by the publisher. If no violation is ob-
served, the regulator allows the fetched event to be executed
(3). Otherwise, the event will be delayed until the constraints
are satisfied (3).

B. Resource Constraints

To specify resource constraints for ads, content publishers
leverage three types of constraint primitives (Table I).

Publisher
Content

Resource
Constraints

AdJust

Runtime

Source Code
Transformer

Transformed
Source Code Content Publisher

Website

Event Queue

Resource Regulator

1

2

3

3
Delay

Execute

(a) Offline Web Page Transformation (b) Runtime Regulation

Fig. 5. System Overview.

(1) Priority primitives specify the priority level (numbers 0-9
with smaller number denoting higher priority) of an ad.
Ads with higher priority will get loaded first.

(2) Total quota primitives are designed to regulate resource
consumption during the entire ad life-cycle. For example,
a publisher can refuse to load an ad with more than 10 lay-
ers of delegations with the primitive “delegations[AD] ≤
10”.

(3) Time-slot quota primitives focus on resource consumption
in a short period of time. For example, publishers can
use them to regulate the behavior of aggressively sending
requests within one second.

TABLE I
PRIMITIVES FOR RESOURCE CONSTRAINTS.

Type Primitive Description (Example)

Priority pri
Priority of an ad slot
• e.g., ‘pri[AD] = 1’ (Set priority to 1)

totalT ime
Cumulative time spent
• e.g., ‘totalT ime[AD] < t’

(Should be loaded within t seconds)

repeatRequest
of repetitive requests on the same URI
• e.g., ‘∀repeatRequests[AD] < r’

(No more than r requests with the same URI)

delegations
of delegations

Total • e.g., ‘delegations[AD] < d’
quota (Should be loaded before d delegations)

ajaxRequests
of Ajax requests
• e.g., ‘ajaxRequests[AD] < a’

(At most a Ajax requests can be sent)

uriRequests
of URI requests
• e.g., ‘uriRequests[AD] < u’

(At most u URI requests can be sent)

elements
of elements created
• e.g., ‘elements[AD] < e’

(At most e HTML elements can be created)

delegationsTS
of delegations per second
• e.g., ‘delegationsTS[AD] <= dr’

(At most dr delegations per second)

ajaxRequestsTS
of Ajax requests per second
• e.g., ‘ajaxRequestsTS[AD] <= ar’

Time-slot (At most ar Ajax requests per second)
quota

uriRequestsTS
of network requests per second
• e.g., ‘uriRequestsTS[AD] <= ur’

(At most ur URI requests per second)

elementsTS
of HTML elements created per second
• e.g., ‘elementsTS[AD] <= er’

(At most er elements can be created per sec.)

C. Source Code Transformer

Once content publishers annotate resource constraints on
their web pages, Source Code Transformer will compile the
resource constraints into JavaScript snippets and inject them
into the web pages. Specifically, it first parses the web page to

a DOM tree using htmlparser [25]. Then, it traverses the tree to
encode resource constraints on the node that encloses ads (e.g.,
<iframe>). Along with the encoded resource constraints, it
also inserts AdJust runtime support into the web page. The
transformed source code will be executed in web browsers to
regulate resource-consuming events at runtime.

D. AdJust Runtime

AdJust’s runtime support has two components: Persistent
Runtime Installer (PRI) and Resource Event Shim (RES).

Persistent Runtime Installer (PRI). To mitigate resource
abusing ads throughout the entire ad delivery process, AdJust’s
runtime support must be persistently active along the delega-
tion chain. During each ad delegation, third-party ads create
new inner <iframe> elements that create a completely new
and isolated execution context from their parents. Thus, AdJust
must install itself into the newly created <iframe> elements
so that it can be persistently monitoring and regulating re-
source consumptions in the new inner elements. Otherwise,
AdJust loses control over the <iframe> elements. To do so,
Persistent Runtime Installer (PRI) ensures the entire system,
including itself, is persistently installed throughout the entire
ad delivery process by intercepting JavaScript APIs that can
be used to dynamically create <iframe>. For example,
document.write and document.createElement are
the most common ways to create a DOM element dynamically.
AdJust intercepts such APIs and injects JavaScript code snip-
pets that can install AdJust in the newly created <iframe>.

Resource Event Shim (RES). Resource Event Shim in-
struments JavaScript APIs that create resource consuming
events to transparently intercept their invocations at runtime.
These events include sending HTTP requests, loading images,
DOM creations, etc. We categorize resource-consuming events
associated with ads into two event types: (1) Events causing
HTTP requests (ET1) and (2) Events causing new HTML
elements inserted into a web page (ET2). Without loss of gen-
erality, there are four ways to dynamically generate resource
consuming events: (a) writing HTML source into a web page,
(b) creating HTML elements via the createElements()
API, (c) modifying the src property of HTML elements,
and (d) creating AJAX requests. Note that all four ways may
initiate HTTP requests. (a) and (b) will also insert new HTML
elements. Next, we discuss each type of the interfaces in detail
and explain how AdJust intercepts these interfaces.

(a) Writing HTML source into a web page. Developers may
call the document.write() or set the HTML content
of an element by assigning its innerHTML property.
These interfaces may insert new elements (ET2) and
generate HTTP requests (ET1) if a newly inserted element
supports URL attributes. AdJust intercepts the interfaces
and puts a resource consuming event with its event type
(e.g., ET1 or ET2) into the event queue. In particular, if a
newly created element supports a URL value, the event is
annotated with ET1 type and then enqueued. Otherwise,
it is annotated with ET2 and then enqueued.

(b) Creating HTML elements. The most common way
to inject elements into a web page is calling
createElement() function to create an element, fol-
lowed by appendChild() or insertBefore().
AdJust instruments functions appendChild() and
insertBefore() to intercept their invocations. When
invoked, AdJust checks whether a src/url/href prop-
erty is supported. If so, the event with ET1 event type
is enqueued to the event queue. Otherwise, the event is
treated as ET2 events and gets queued.

(c) Modifying the src property of HTML elements. Mod-
ifying an existing element’s src property by calling
setAtrribute() or directly assigning a new value
may generate a URL request. For instance, changing
the src property of an image element () to
the link of an image file results in downloading a new
image file. To intercept such events, AdJust overrides
setAttribute() and the setter of src property. When
they are called, AdJust enqueues the event with ET1 event
type to the event queue.

(d) Sending AJAX requests. AJAX requests are commonly
used to refresh contents without reloading the entire page.
AJAX requests can be initiated by calling the send()
method of an XMLHttpRequest object. AdJust over-
rides the send() method so that AdJust enqueues the
event with ET1 event type onto the event queue.

At runtime, depending on the event type, the resource regu-
lator will check different constraints to determine if the event
should be executed immediately or delayed. For example,
ET1 type events are checked against network related resource
constraints while ET2 type events are checked against DOM
resource constraints (e.g., # of DOM element creations).

E. Resource Event Queue

Resource Event Queue is a multi-level queue where each
queue contains resource-consuming events with the same
priority. Specifically, we maintain 10 internal queues: 0-9 with
a smaller number denoting higher priority. Incoming resource
events are enqueued accordingly. If no priority is specified, an
event will be equeued to the queue with least priority (priority
9). When AdJust dequeues an event, it first checks the priority
queue with highest priority. If no event is available to schedule,
it dequeues an event from the next priority queue.

F. Resource Regulator

Resource regulator repeatedly dequeues events from the
Resource Event Queue and decides whether each event should
be executed right away or delayed. Specifically, given an event,
it checks the event against the resource constraints to see
if any of the constraints are violated. If any are violated,
the regulator puts the event back into the queue and delays
its execution. Otherwise, the event will be dispatched and
executed immediately.

Resource Constraint Checking. Before dispatching an event,
the Resource Regulator checks relevant resource constraints.
Depending on the type of resource constraints, the Resource
Regulator handles the event accordingly:
(1) For priority resource constraints, the Resource Regulator

dequeues events in their priority orders. In particular, it
first checks the priority queue with the highest priority.
If no event is available to schedule in this queue, the
Resource Regulator dequeues an event from the next
priority queue and so on.

(2) For total quota resource constraints, once an ad exceeds
the quota, no further event will be allowed, because the
constraint is enforced for the entire life-cycle of an ad.
For instance, suppose a developer specifies the resource
constraint “elements[AD] ≤ 100” to only allow ads that
inject less than 100 HTML elements into the web page.
Based on the value of runtime counter, once 100 elements
have already been inserted, AdJust will discard additional
element creation event.

(3) For time-slot quota primitives, resource constraints are
temporary. If an event violates time-slot quote constraints,
the Resource Regulator will put this event back to the
event queue and retry this event at a later time. Con-
sider a resource constraint “elementsTS[AD] ≤ 10”
and assume that there were already 10 elements injected
during the last second. If there is a new element cre-
ation event, the resource constraint is violated. However,
since “elementsTS” represents the allowed number of
elements injected within a second, a new element can be
inserted after the counter is reset.

Runtime Counters. Runtime counters maintain the current
state of resource consumption. At runtime, the Resource
Regulator compares the runtime counter values with resource
constraints to decide whether an event should be executed or
delayed. Maintaining the runtime counters is straightforward:
AdJust updates the associated runtime counters whenever a
resource event is processed and dispatched. For instance, when
an HTML creation event is executed, the counter for “# of
elements created” is increased by 1. The runtime counters for
each primitive are maintained as follows.
• totalTime: When an event is executed, AdJust records

timestamps when it starts and ends to obtain an elapsed
time for the event and accumulates the time to totalTime.
• repeatRequest: For each url, if there are multiple requests on

the same url, AdJust counts the number of repeated requests
including AJAX requests.

• delegations: We consider creating an inner <iframe>
as a delegation. When an inner <iframe> is created,
delegations are increased by 1.

• ajaxRequests, urlRequests, elements: They are increased by
1 on every AJAX request, URL request (e.g., loading an im-
age in), and HTML element creation respectively.

• delegationsTS, ajaxRequestsTS, urlRequestsTS, elementsTS:
These are time-slot quota primitives. AdJust counts the
number of events that occurred during the last 1 second.

IV. EMPIRICAL STUDIES

To better understand how resource abusing problems affect
user experience in practice, we have conducted a one-month
empirical study on Alexa top 200 news websites that contain
third-party ads. In total, 166 websites contain at least one ad.
We quantify these problems and classify resource abusing ads
based on their effects.

A. Experimental Methodology

We conduct the data collection in three steps.

Step 1: Collecting website speed metrics. We collect the
following data from the Alexa top 200 news websites to
measure: (1) the page load time, the visually complete time,
speed index, and time to interactive; (2) the CPU time spent
on each individual HTML element/JavaScript/<iframe>;
(3) the network time spent on URL requests. Also, for each
element and network request, we identify the ad generated that
element or request. To achieve that, we leverage website test-
ing service WebPageTest [14] to measure page-level metrics.
The service can work with Chrome DevTool to provide an in-
depth view of the CPU and network requests at the element
level. The results are collected from page tests at Dulles, VA by
following the guidelines of empirical studies presented in [16],
[19], [30]. We chose 10/1 Mbps as the connection rate because
this is the rate half of Internet users in United States use as
of Q1 2017 [26]. Of the 200 news websites, 166 websites
contained at least one third-party ad.

Step 2. Annotating third-party ad scripts. To study the CPU
and network time on individual ads, we separate the result for
third-party ad scripts from publisher content. As most third-
party ads are enclosed within an frame (<iframe>) and can
be identified effectively by ad blockers, we use an ad blocker,
AdBlock Plus Chrome extension [10], to locate <iframe>
with ads. In particular, we visit a website twice using Chrome
browser with and without the Adblock Plus extension. We
saved the web page code for both visits and leveraged an
HTML parser [25] to compare the DOM structures.

Step 3: Data analysis. To measure the time spent on each
ad, we identify the top-level <iframe> for an ad from the
profiler in Chrome DevTool, based on the DOM tree compar-
ison result. Then, starting from the top-level <iframe>, we
check whether nested inner frames are enclosed by examining
the referrer field of entries that request new pages. In this way,
we can discover a chain of delegations and record each nested
inner <iframe> that belongs to an ad. Finally, we add up

the time for URL requests within all of the recorded frames
to obtain the network time for this ad. Similarly, we sum up
the time of the HTML parsing, the script evaluation and the
layout update that belong to the ad as its CPU time.

B. Resource Abusing Ads
We have observed two common resource abusing problems:

performance degradation and priority inversions.
1) Performance Degradation: Website performance degra-

dation can be the result of bad programming practices or
defects that consume excessive computation resources. They
drag down the browser performance and introduce unneces-
sary delays in user-perceived page load time. We define the
following indices to measure the performance degradation.
Slow Response Time (SRT). We are interested in the response
time that JavaScript code takes to react to user actions, as it is
one of the most critical factors affecting user perceptions. Slow
responses are usually caused by long-running JavaScript that
blocks the main thread from serving user events. As suggested,
0.1 seconds is the limit for having users feel the system is
reacting without delays [24]. Therefore, we say a page is
unresponsive when the browser main thread is blocked for
more than 0.1 seconds and collect such unresponsive windows.
Intuitively, we define third-party ads cause slow response time
problem, if they introduce more unresponsive windows than
publisher contents. Formally, if we use w′ and w to denote
unresponsive windows caused by ads and publisher contents,
a page suffers from the SRT issue when

∑
w′i >

∑
wi.

Result. Of the 166 websites contained ads, 36 websites
suffered from slow response time issue. Figure 6 shows a
partial result on 20 websites. The red bars are the accumu-
lated unresponsive time caused by ads, and the blue bars
are the accumulated unresponsive time caused by publisher
contents. On average, ads contribute 12.5 seconds to the
unresponsive time, which is 3.1 times of publisher contents.

Load Time Bloating (LTB). The requests initiated by third-
party ads and publisher contents are dispatched in a first-come-
first-serve manner, as browsers only allow a limited number
of concurrent requests. However, third-party ads usually make
a substantial number of HTTP requests to load resources at
runtime, which may delay or block the delivery of publisher
contents. It is well known that slow website load time costs
money, as it makes visitors switch to competitor websites.
Moreover, search engines recently incorporate page load time
into its ranking algorithm to downgrade websites with slow
loading time [23]. To this end, we define load time bloating
to measure the delay introduced by ads. Suppose we use T
and T ′ to represent the page load time with and without ads,
a website suffers from the LTB issue if T > 2 ∗ T ′.
Result. We have found 61 websites experienced load time
bloating problem. Figure 7 shows the partial result on 20
websites. The red bars are the time to load ads, and the blue
bars are load time of publisher contents. The average time
to fully load the publish contents is 22.91 seconds, where
ads contribute 15.09 seconds.

0
5

10
15
20
25
30
35
40
45 Unresponsive	Time	By	Contents

Unresponsive	Time	By	Ads

Fig. 6. 20 news websites show SRT: browser experience more unresponsive periods due to ads.

0
10
20
30
40
50
60
70
80
90 Content	Load	Time Ads	Load	Time

Fig. 7. 20 news websites experience LBT: web page load time dramatically increased due to ads.

2) Priority Inversions: In general, publisher contents are
expected to be delivered with higher priority than ads. How-
ever, we observe that, on many websites, ads are loaded
before publisher contents. Moreover, off-screen ads may delay
contents or ads displayed in the current screen. As we can gen-
erally infer developer’s preference from the order suggested
by HTML tags, we define two types of priority inversions to
capture unintended load sequences.

Content Priority Inversion (CPI). Website developers usu-
ally optimize the critical rendering path to promptly deliver
their contents. However, ads may compete for the resources
and get rendered first. We say content priority inversion
happens if a higher priority publisher content loads after an
ad, or formally, ∃ i s.t. T > Ti, where T and Ti denote
when publisher contents and ad i are loaded.

Result. 98 websites exhibited content priority inversion issue
at least once during our one-month test. These websites
either have many ads or contain complex ads that needs
a long time (a few seconds) to finish.

Ad Order Inversion (AOI). Publisher developers may want
to specify the loading order between two ads. Although most
ad serving platforms allow them to do so, the actual execution
order may be different. We use ad order inversion to denote
the scenario when two ads are loaded in a different order
comparing to the order specified in the HTML source code.
Formally, r1 ≺ r2 and T1 > T2, where the request r1
initiated by ad1 is sent out before the one r2 by ad2 but ad1
loaded at T1 is rendered after ad2 loaded at T2 .

Result. We identified 68 websites experienced ad order
inversion issue by preloading off-screen ads prior on-screen
ads. Preloading off-screen ads prior on-screen ads contradicts
the order defined by developers. It is more likely developers
prefer to prioritize the ads in the current view over the ads
off the screen.

V. EVALUATION

We evaluate how AdJust mitigate the resource abusing ads,
particularly focusing on the following five research questions.

• RQ1: Can AdJust mitigate the SRT problem and improve
web page response time?
• RQ2: Can AdJust mitigate the LTB problem and reduce the

time to load publisher contents?
• RQ3: By prioritizing publisher contents, does AdJust help

on loading publisher contents faster?
• RQ4: Can AdJust ensure advertisements are rendered in the

consistent order as developers expected?
• RQ5: How much performance overhead does AdJust intro-

duce?

A. Experimental Results

RQ1: Can AdJust mitigate the SRT problem and improve
web page response time?

As we have shown in Section IV, out of the Alexa top 200
news websites, 36 news websites suffer from the SRT problem.
To mitigate the SRT problem, we set the maximum speed of
URL requests initiated by ads to be less than 20 per second
by using the resource constraint “urlRequests ≤ 20”.

To ease the comparison, we show the unresponsive time
before and after AdJust side by side in Figure 8. In particular,
the first bar represents the unresponsive time before AdJust
(red denotes ads, blue denotes publisher contents), while the
second bar represents the unresponsive time after AdJust (dark
blue denotes ads, grey denotes publisher contents).
Findings. After the mitigation with AdJust, on average,
the total unresponsive time drops to 8.2 seconds where ads
contribute 3.9 seconds. By setting a frequency cap for the
URL requests initiated by ads, the main thread is blocked
by ads less frequently. As the main thread is less busy with
third-party ads, it will be able to process publisher contents
and user interactions more smoothly.

RQ2: Can AdJust mitigate the LTB problem and reduce
the time to load publisher contents?

We have identified 61 sites on which publisher contents
substantially delayed due to third-party ads. By setting the
maximum number of elements can be created by ads to 50
per second, the average time to load publisher contents is
decreased from 22.9 seconds to 10.3 seconds. Figure 9 shows

0
5
10
15
20
25
30
35
40
45 Pulisher	(w/o	AdJust)

Ads	(w/o	AdJust)
Publisher	(w/	AdJust)
Ads	(w/	AdJust)

Fig. 8. Mitigation of Slow Response Time.

the result of 20 representative sites. For each site, the first bar
and second bar denote the duration to load publisher contents
before and after AdJust.

After the mitigation, we are interested in if the webiste
with AdJust takes longer time to load ads and if so, how
much additional time AdJust introduced on ads. Table II shows
the load time of the top two ads above the fold on the 20
sites. Specifically, the second column shows the number of
HTML elements associated with publisher contents. The third
column shows publisher contents load time before and after
the mitigation. Similarly, the number of HTML elements and
load time are given for the first ad (columns 4-5) and the
second ad (columns 6-7).

Findings. The average HTML elements created by the
top two ads are 119 and 206 (if exists). By regulating
HTML creations speed, it takes slightly longer to load the
first ad (14.91s → 16.02s) and the second ad (17.87s →
18.63s). However, the improvement on publisher contents
is significant: publisher contents are able to be loaded 2.2x
faster (22.9s → 10.3s).

RQ3: By prioritizing publisher contents, does AdJust help
on loading publisher contents faster?

To prioritize publisher contents over third-party ads in a
web page, we assign higher priority to publisher contents
and the same lower priority to all ads. Out of the top 200
news websites, 166 sites contain at least one ad tag. By
prioritizing publisher contents, on average, the load time of
publisher contents is significantly improved (15.25s→ 8.09s).
To measure the performance overhead on third-party ads, we
measure the slowdowns for the top two ads in the current view.

Findings. As shown in Figure 10(a) and Figure 10(b), the
load time of the top two ads are slightly increased: On 158
out of 166 sites (95%), the first ad is slowed down less than
5 seconds; for the second ad, 45 out of 49 sites (92%) are
slowed down less than 5 seconds.

RQ4: Can AdJust ensure advertisements are rendered in
the consistent order as developers expected?

To evaluate the effectiveness of AdJust in regulating ad
loading orders, we test 68 news websites that preload the ads
below the current view. Preloading ads off the screen is not
an optimized strategy, because it competes network and CPU
resources and delays the contents in the current view. Hence,

web developers may wish to prioritize the ads in the current
view over the ads off the screen.
Findings. We assign higher priority to ads above the fold
and lower priority to remaining ads. As shown in Figure 11,
with AdJust, the ads in the current view on all websites are
loaded faster. Some of the ads are even delivered 10s earlier.
In the meanwhile, by deprioritizing off screen ads, they are
loaded slower on all tested websites.

RQ5: How much performance overhead does AdJust
introduce?

When reducing the HTML creation rate, we observed a
slight increase in time to load the top two ads (7.4% and
4.2% respectively). However, the publisher content loaded sig-
nificantly faster (220%). Similarly, by limiting the ad requests
speed, the top two ads were slowed down for less than five
seconds.
Findings. In summary, the only runtime overhead is main-
taining resource usage counters per ad iframe to delay ad
executions. No overhead is added to the publisher content.

B. Case Study

In this section, we discuss how a defective video ad on
www.accuweather.com caused the web page respond slowly,
and demonstrate the mitigation.

The simplified code of loading the video ad is shown
in Figure 12. Specifically, the website used Google Dou-
bleClick to sell the ad space (line 1), which further resold
this ad space to another advertising platform PubMatic (line
2). PubMatic instructed DoubleClick to load a video player
OvaMediaPlayer.js to request ads (line 6). The <div>
element with class “_cm-video-ad” was created to hold
the video ad (line 8). During ad delegations, several ad files
were considered insecure and thus blocked by the browser. In
particular, the ad files used self-signed SSL certificates which
were not verified by a trusted certificate authority. Due to this
error, each ad request further incurred 307 additional URL
requests on average. As a result, the website experienced slow
response time for user events.

Figure 13(a) shows the page responsiveness for the first 25
seconds. For simplicity, we omit unresponsive windows shorter
than 0.5 seconds. The red windows represent the unresponsive
windows longer than 0.5 seconds but shorter than 1 second,
while the dark red windows are unresponsive time longer

0
10
20
30
40
50
60
70 Contents	Load	Time	(w/o	AdJust) Contents	Load	Time	(w/	AdJust)

Fig. 9. Mitigation of Load Time Bloating.

TABLE II
EFFECT ON THE FIRST TWO ADS ABOVE THE FOLD.

Website Publisher Content First Ad Second Ad
Elements Load Time Before / After AdJust (s) Elements Load Time Before / After AdJust (s) Elements Load Time Before / After AdJust (s)

abcnews.go.com 6163 11.036 / 6.891 26 9.817 / 9.296 - -
accuweather.com 5107 42.728 / 15.826 210 19.72 / 22.287 285 37.688 / 41.573
bloomberg.com 5077 17.034 / 10.097 67 12.785 / 13.290 - -
chicagotribune.com 4328 20.145 / 11.727 191 13.573 / 18.621 330 18.449 / 23.782
cnbc.com 9344 30.513 / 4.292 118 15.222 / 17.403 - -
forbes.com 3949 8.233 / 6.421 52 6.109 / 6.059 - -
hindustantimes.com 6223 19.491 / 10.345 162 14.715 / 16.513 141 20.702 / 22.031
huffingtonpost.com 4493 12.929 / 7.599 159 9.887 / 11.354 - -
indianexpress.com 4174 11.471 / 8.490 127 9.691 / 11.559 148 14.982 / 18.603
latimes.com 2878 14.688 / 7.100 125 12.651 / 14.270 268 13.774 / 17.006
news.com.au 3194 7.482 / 5.694 63 6.843 / 7.099 253 10.808 / 13.295
newsweek.com 2363 53.281 / 14.034 307 27.763 / 34.992 - -
nypost.com 6038 8.661 / 6.404 256 6.983 / 10.421 - -
nytimes.com 9776 20.68 / 10.824 189 15.002 / 16.693 - -
reddit.com 2880 11.324 / 7.943 62 5.157 / 5.922 174 10.821 / 12.117
sfgate.com 11215 14.908 / 10.002 195 11.748 / 14.972 240 16.528 / 19.393
thedailybeast.com 1754 16.101 / 8.999 240 9.474 / 13.103 - -
usatoday.com 5377 10.025 / 5.881 268 8.988 / 12.512 - -
variety.com 5595 59.678 / 16.326 101 59.542 / 62.390 - -
wsj.com 3878 17.793 / 11.498 139 14.529 / 16.788 - -

< 1s
9 sites
18%

1s ~ 3s
21 sites

43%

3s ~ 5s
15 sites

31%

> 5s
4 sites

8%
< 1s

60 sites
36%

1s ~ 3s
79 sites

48%

3s ~ 5s
19 sites

11%

> 5s
8 sites

5%

(a) Ad 1 Fully Loaded (166 sites) (b) Ad 2 Fully Loaded (49 sites)

Fig. 10. Load time differences of top two ads after mitigation with AdJust.

< -1s
9 websites

13%

-1s ~ -3s
13 websites

19%

-3s ~ -5s
42 websites

62%

-5s ~ -10s
4 websites

6%

< 3s
8 websites

12%

3s ~ 5s
21 websites

31%
5s ~ 10s

29 websites
42%

> 10s
10 websites

15%

(a) On-screen ads fully loaded (Faster) (b) Off-screen ads fully loaded (Slower)

Fig. 11. Load time differences of on-/off-screen ads.

than 1 second. Initially, the web page requested ad from
DoubleClick at 7.82 second. After two layers of delegations,
the video player was requested at 13.04 second. Then the
player executed JavaScript to initialize and set up event
handlers for playing/pausing actions. After 17.03 seconds, the
video player started to request video ads every 5 seconds,
with a 200-second timeout. Since then, unresponsive windows

1. <iframe src="tpc.googlesyndication.com/…" sandbox="allow-same-origin …">
2. <script src="ads.pubmatic.com/AdServer/js/showad.js"></script>
3. <iframe id="aswift_0">
4. …
5. <iframe src="pagead2.googlesyndication.com/ /show_ads_impl.js">
6. <script src= "cdn.cmeden.com/…/v6.6.33/OvaMediaPlayer.js"></script>
7. …
8. <div class="_cm-video-ad">
9. <!-- video ad -->
10. </div>
11. </iframe>
12. </iframe>
13. </iframe>

Fig. 12. Code snippet of a defective video ad on accuweather.com.

(longer than 0.5 seconds) were observed every 5 seconds. The
publisher contents loaded at around 10 second.
Mitigation. We deployed AdJust on this web page by setting
the maximum URL requests rate to 20 requests per second.
The result is shown in Figure 13(b). Because AdJust had
constrained the frequency of URL requests, the video player
was requested with slight delays (13.04 seconds → 14.61
seconds). After 20.62 seconds, the video player finished the
initialization and started to request ads. As can be seen, the
web page was rarely blocked by requesting ads and would be
able to quickly respond to user events. In addition, publisher
contents loaded faster due to less competitions from ads (10.02
seconds → 8.71 seconds).

VI. LIMITATION AND FUTURE WORK

AdJust presents an effective approach for publishers to
regulate resource abusing ads. Despite its efficacy, there is
room for improvement.

0.0 5.0 10.0 15.0 20.0 25.0

Request Video Ad

Total
Publisher Content

Video Ad

Ad Delegations Started

Request OvaMediaPlayer.js

Contents Loaded

Unresponsive
Windows

(a) Unresponsive windows before AdJust

0.0 5.0 10.0 15.0 20.0 25.0

Request Video Ad

Total
Publisher Content

Video Ad

Ad Delegations Started

Contents Loaded

Unresponsive
Windows

Request OvaMediaPlayer.js

(b) Unresponsive windows after AdJust

Fig. 13. Website www.accuweather.com unresponsive windows.

AdJust requires publishers to specify resource constraints
manually. While developers are able to do so without much
difficulty in practice, AdJust can be extended to provide a more
user-friendly experience such as automated resource consump-
tion monitorings and recommendations. In fact, our empiri-
cal studies provide a guideline for automated measurements.
Measuring client-side machine capacities to automatically set
resource constraints is our ongoing work.

Another current limitation which we leave for future work is
conducting user evaluations on AdJust. By deploying AdJust
on websites with resource abusing ads and collecting user
evaluations, we will be able to measure how effective AdJust is
in improving user experience and may discover other measures
that can lead to further improvements.

To reduce the threats to validity, we have carefully included
and measured the most critical factors we believe truly af-
fect user experience. We have also made efforts to maintain
consistency and avoid bias. However, non-deterministic and
uncontrollable factors, such as the accuracy of the measure-
ment tool being used and the time of the day measurements
were performed, may affect the validity of our empirical study.
Conducting measurements under various settings to handle
inaccuracy and avoid bias is an intriguing direction for our
future research.

VII. RELATED WORK

The line of work most closely related to ours are the solu-
tions to speed up web page loads. WProf [28] is proposed to
produce a dependency graph for page load activities. Shandian
[29] restructures the page load process based on dependencies
and optimizes what portion of the page should be loaded first.
WebGaze [17] prioritizes loading objects that exhibit collective
fixation to improve user experience. It leverages eye gaze to
identify most attractive portions for users and optimize the

loading procedure correspondingly. Klotski [9] prioritizes the
content delivery based on high-utility contents or invariant
dependency structures. Our work also restructures the load
procedure. However, we leverage a set of orthogonal features,
i.e., the source of the contents. So, the optimizations based on
dependencies among page load activities, most attractive page
portions or high-utility content may not directly apply to the
performance issues caused by third-party ads.

Lahaie et al. [20] proposed an expressive auction design
including a language for the bidding process in order to
enable flexible controls over advertisements. Similarly, Lang
et al. [21] propose an algorithm to improve the effectiveness
of an auction process. AdJust allows publishers to control over
the ads at runtime to solve resource related issues and provide
better user experiences to publishers and website visitors.

Our work is also related to user experience measurements.
There are large scale user studies [8], [27] that measure
performance of real-world web pages. Bocchi et al. [6] sur-
veyed state of the art metrics for web user experience quality
measurements and proposed metrics relevant and practical.
Google Ad Experience Report [3] helps developers locate
annoying ads (e.g. popups). However, Google Ad Experience
does not address the performance issues caused by third-
party ads. Besides, Google Ad Experience Report is an offline
tool and does not fix problematic ads. Developers have to
manually fix violating ads by changing or removing ads once
observed. AdJust regulates resource abusing ads and prevents
over-consumption at runtime.

Researchers studied the impact of budget management
strategies and pricing [5], [15] as well as the impact of ad-
blocking software and restrictions on third-party tracking [7].
Goldstein et al. [11] studied relationship between ad exposure
time and the effectiveness of ad. However, they do not focus
on resource related issues hence are not applicable to quantify
the user experience degradation cause by ads.

VIII. CONCLUSION

In this paper, we present AdJust, a system that allows pub-
lisher developers to specify resource constraints for third-party
ads. AdJust is able to monitor and regulate resource abusing
ads by transparently intercepting key JavaScript APIs. AdJust
features a runtime scheduler, which can regulate resource
consuming events based on the resource constraints specified
by publisher developers. We also propose a system of measure-
ment that can be used to quantify the performance degradation
and priority inversion issues caused by ads. AdJust’s runtime
support persistently enforces the regulations by propagating
through the delegations along the entire ad delivery chain. Our
evaluation of Alexa top 200 news websites shows that AdJust
is highly effective in mitigating resource abusing ads.

IX. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable inputs and constructive comments.

REFERENCES

[1] Ad Script jsvpaid.js.
http://redir.adap.tv/redir/javascript/jsvpaid.js.

[2] Ad Script vd0.2.88.1.js.
http://cdn.springserve.com/vd/vd0.2.88.1.js.

[3] Google Ad Experience Report API.
https://developers.google.com/ad-experience-report/.

[4] Amazon. Amazon.com Associates: The web’s most popular and suc-
cessful affiliate program.
https://affiliate-program.amazon.com/.

[5] Santiago Balseiro, Anthony Kim, Mohammad Mahdian, and Vahab
Mirrokni. Budget Management Strategies in Repeated Auctions. In
Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, pages 15–23, Republic and Canton of Geneva, Switzerland,
2017. International World Wide Web Conferences Steering Committee.

[6] Enrico Bocchi, Luca De Cicco, and Dario Rossi. Measuring the Quality
of Experience of Web Users. In Proceedings of the 2016 workshop
on QoE-based Analysis and Management of Data Communication
Networks, pages 37–42, Florianopolis, Brazil, December 2016. ACM.

[7] Ceren Budak, Sharad Goel, Justin Rao, and Georgios Zervas. Under-
standing Emerging Threats to Online Advertising. In Proceedings of the
2016 ACM Conference on Economics and Computation, EC ’16, pages
561–578, Maastricht, The Netherlands, 2016. ACM.

[8] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. Under-
standing Website Complexity: Measurements, Metrics, and Implications.
In Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’11, pages 313–328, Berlin, Germany,
2011. ACM.

[9] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha,
and Vyas Sekar. KLOTSKI: Reprioritizing Web Content to Improve User
Experience on Mobile Devices. In Proceedings of the 12th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’15,
pages 439–453, Oakland, CA, USA, 2015. USENIX Association.

[10] Eyeo GmbH. Adblock Plus.
https://adblockplus.org/.

[11] Daniel G. Goldstein, R. Preston McAfee, and Siddharth Suri. The
Effects of Exposure Time on Memory of Display Advertisements. In
Proceedings of the 12th ACM Conference on Electronic Commerce, EC
’11, pages 49–58, San Jose, California, USA, 2011. ACM.

[12] Google. DoubleClick – Digital Advertising Solutions.
https://www.doubleclickbygoogle.com/.

[13] Google. Google AdSense – Make Money Online through Website
Monetization.
https://www.google.com/adsense/.

[14] Google. WebPagetest – Website Performance and Optimization Test.
https://www.webpagetest.org.

[15] Hoda Heidari, Mohammad Mahdian, Umar Syed, Sergei Vassilvitskii,
and Sadra Yazdanbod. Pricing a Low-Regret Seller. In Proceedings of
the Thirty-Third International Conference on Machine Learning (ICML
2016), New York, NY, USA, 2016.

[16] Natalia Juristo and Ana M. Moreno. Basics of Software Engineering Ex-
perimentation. Springer Publishing Company, Incorporated, 1st edition,
2010.

[17] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R.
Das. Improving User Perceived Page Load Times Using Gaze. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 545–559, Boston, MA, 2017. USENIX Association.

[18] Kissmetrics. How Loading Time Affects Your Bottom Line.
https://blog.kissmetrics.com/loading-time/, 2011.

[19] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard,
Peter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett
Rosenberg. Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Trans. Softw. Eng., 28(8):721–734, August 2002.

[20] Sébastien Lahaie, David C. Parkes, and David M. Pennock. An Expres-
sive Auction Design for Online Display Advertising. In Proceedings
of the 23rd National Conference on Artificial Intelligence - Volume 1,
AAAI’08, pages 108–113. AAAI Press, 2008.

[21] Kevin J. Lang, Benjamin Moseley, and Sergei Vassilvitskii. Handling
Forecast Errors While Bidding for Display Advertising. In Proceedings
of the 21st International Conference on World Wide Web, WWW ’12,
pages 371–380, Lyon, France, 2012. ACM.

[22] StreamRail Ltd. Streamrail Ad Server.
https://sx.streamrail.net/spot?scid=182172&p=http%3A%2F%
2Fchicagotribune.com&cb=51425144694422030000&ctrl=true&
muted=false.

[23] moz.com. Page Speed.
https://moz.com/learn/seo/page-speed.

[24] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers
Inc., San Francisco, CA, 1993.

[25] npm Software. Htmlparser2.
https://www.npmjs.com/package/htmlparser2.

[26] Akamai Technologies. Akamai’s [state of the internet] Q1 2017 Report.
https://www.akamai.com/fr/fr/multimedia/documents/
state-of-the-internet/q1-2017-state-of-the-internet-connectivity-report.
pdf.

[27] M. Varela, L. Skorin-Kapov, T. Mäki, and T. Hoßfeld. QoE in the Web:
A Dance of Design and Performance. In 2015 Seventh International
Workshop on Quality of Multimedia Experience (QoMEX), pages 1–7,
May 2015.

[28] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and
David Wetherall. Demystifying Page Load Performance with WProf. In
Presented as Part of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’13), pages 473–485, Lombard, IL,
2013. USENIX Association.

[29] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. Speed-
ing up Web Page Loads with Shandian. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’16), pages
109–122, Santa Clara, CA, 2016. USENIX Association.

[30] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn
Regnell, and Anders Wesslén. Experimentation in Software Engineering:
An Introduction. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

http://redir.adap.tv/redir/javascript/jsvpaid.js
http://cdn.springserve.com/vd/vd0.2.88.1.js
https://developers.google.com/ad-experience-report/
https://affiliate-program.amazon.com/
https://adblockplus.org/
https://www.doubleclickbygoogle.com/
https://www.google.com/adsense/
https://www.webpagetest.org
https://blog.kissmetrics.com/loading-time/
https://sx.streamrail.net/spot?scid=182172&p=http%3A%2F%2Fchicagotribune.com&cb=51425144694422030000&ctrl=true&muted=false
https://sx.streamrail.net/spot?scid=182172&p=http%3A%2F%2Fchicagotribune.com&cb=51425144694422030000&ctrl=true&muted=false
https://sx.streamrail.net/spot?scid=182172&p=http%3A%2F%2Fchicagotribune.com&cb=51425144694422030000&ctrl=true&muted=false
https://moz.com/learn/seo/page-speed
https://www.npmjs.com/package/htmlparser2
https://www.akamai.com/fr/fr/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/fr/fr/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/fr/fr/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-report.pdf

