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FG-SAT: Efficient Flow Graph for Encrypted Traffic
Classification Under Environment Shifts

Susu Cui , Xueying Han , Dongqi Han , Zhiliang Wang , Member, IEEE, Weihang Wang, Bo Jiang ,
Baoxu Liu, and Zhigang Lu

Abstract—Encrypted traffic classification plays a critical role
in network security and management. Currently, mining deep
patterns from side-channel contents and plaintext fields through
neural networks is a major solution. However, existing methods
have two major limitations: 1) They fail to recognize the criti-
cal link between transport layer mechanisms and applications,
missing the opportunity to learn internal structure features for
accurate traffic classification. 2) They assume network traffic in
an unrealistically stable and singular environment, making it dif-
ficult to effectively classify real-world traffic under environment
shifts. In this paper, we propose FG-SAT, the first end-to-end
method for encrypted traffic analysis under environment shifts.
We propose a key abstraction, the Flow Graph, to represent
flow internal relationship structures and rich node attributes,
which enables robust and generalized representation. Addition-
ally, to address the problem of inconsistent data distribution
under environment shifts, we introduce a novel feature selection
algorithm based on Jensen-Shannon divergence (JSD) to select
robust node attributes. Finally, we design a classifier, GraphSAT,
which integrates GraphSAGE and GAT to deeply learn Flow
Graph features, enabling accurate encrypted traffic identifica-
tion. FG-SAT exhibits both efficient and robust classification
performance under environment shifts and outperforms state-
of-the-art methods in encrypted attack detection and application
classification.

Index Terms—Encrypted traffic, environment shifts, flow
graph, feature selection, graph neural networks (GNNs).

I. INTRODUCTION

TRAFFIC encryption technology plays a significant role
in enhancing network security and privacy. However,
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it also poses challenges for security managers and internet
service providers (ISPs). Firstly, malware can be encrypted
and transmitted as easily as legitimate files. In fact, over 80%
of malware spreads through TLS protocol [1]. Many malicious
network attacks also employ encryption technology to conceal
communication content [2]. Therefore, security managers need
to identify encrypted traffic in order to inspect malicious
encrypted traffic. Secondly, with the rapid growth of smart
devices and new applications, network traffic is increasing
geometrically. ISPs need to identify encrypted traffic to pro-
vide personalized services, enhancing network efficiency and
service quality.

With traffic payloads encrypted, traditional classification
methods become ineffective. However, studies show that
machine learning and neural networks can classify encrypted
traffic by analyzing its statistical, byte, and sequential features.
Based on feature analysis, encrypted traffic classification can
be divided into three methods: (1) Statistics-based methods [3],
[4], [5], [6], [7], [8], [9], [10], [11] extract the side-channel
statistical features and header fields to construct machine
learning classifiers for traffic classification. (2) Byte-based
methods [12], [13], [14], [15], [16] utilize the raw bytes of
encrypted traffic and transform the classification task into
an image classification task, using neural networks such as
convolutional neural network (CNN) or capsule neural network
(CapsNet) to learn the spatial features of raw bytes in traffic.
(3) Sequence-based methods [17], [18], [19], [20] treat the
traffic as the sequence of packets and extract the packet
length and arrival time as the sequential features, and use
the recurrent neural network (RNN) or Encoder-Decoder for
classification.

Unfortunately, despite the progress made, there are still two
primary limitations in existing works as follows:

Overlook the Critical Link Between Transport Layer
Mechanisms and Applications: Transport layer features are
intrinsically linked to applications. To communicate more
efficiently, the TCP protocol uses a sliding window and
acknowledgment mechanism to send multiple packets at the
same time and a single acknowledgment number to confirm
receipt of multiple packets. As a result, larger sliding windows
are common for streaming applications to complete data
transfer quickly, but instant messaging applications typically
use a balanced exchange of received and acknowledgment
packets. Therefore, encoding structural relationships between
packets can be beneficial for encrypted traffic classification.
However, existing works either do not consider the structural
relationships between packets [21], [22] or are limited to
specific classification scenarios and deployment locations [23],
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Fig. 1. The comparison with the traditional encrypted traffic classification
methods. Traditional methods can only identify traffic matching the training
set distribution, FG-SAT can classify traffic even under environment shifts.

[24], [25], missing the opportunity to learn transport layer
features for accurate and generic classification of the encrypted
traffic.

Unrealistic Stable and Singular Network Environment: Cur-
rent methods mainly focus on traffic classification in a stable
and singular network environment, which is unrealistic in
representing real-world traffic. As shown in Figure 1, network
traffic is susceptible to environmental influences and undergoes
long-term dynamic change [22], [26], [27], which we call
environment shifts1 in this paper. Consider “browsing” appli-
cations as an example, their environment shifts can include
new browser software, different browsing contents, and a
change in network bandwidth, compared with the training data
environment. If not handled properly, these changes can cause
shifts in the distribution of traffic features, leading to poor
classification performance.

To address the abovementioned limitations, we propose
FG-SAT, the first end-to-end method for encrypted traffic clas-
sification in environment shifts. We define a key abstraction,
the Flow Graph, to characterize the internal relationship struc-
ture based on the transport layer mechanisms inside a flow.
The Flow Graph provides several key promises: (1) It treats
packets as nodes and identifies structural relationships between
packets using edges of multiple types that characterize the
window and acknowledgment mechanisms. (2) It features a
general representation that can represent diverse traffic types,
include rich features, and adapt to environment shifts. (3) It
also augments node attributes with header fields extracted
from the 2-4 layers that are independent of encryption
protocols.

To achieve high classification performance in environment
shifts, we propose a robust feature selection algorithm to
solve the problem of inconsistent data distribution. Specifi-
cally, our feature selection algorithm evaluates packet header
fields and automatically selects those stable fields as node

1We define environment shifts as changes in application configuration
and/or network environment that cause changes in statistics and feature
distribution of traffic within the same class. The application configuration
shift includes, but is not limited to, changes in user behaviors. The network
environments shift includes, but is not limited to, changes in protocols and
network quality.

attributes in the face of environment shifts. We use Jensen-
Shannon divergence (JSD), a method for measuring similarity
between two probability distributions, to assess the stability of
features. Specifically, we compare the distribution differences
between inter-class (with environment shifts) and extra-class
(with varying traffic types) using JSD. When the extra-class
JSD is greater than the inter-class JSD, we consider the
features to be stable under environment shifts. Finally, we
build a classifier based on graph neural networks (GNN),
named GraphSAT, to identify encrypted traffic types. Graph-
SAT combines GraphSAGE [28] and GAT [29] to deeply
learn the structural relationships and rich node attributes
of the Flow Graph, enabling efficient encrypted traffic
classification.

Our contributions are summarized as follows:
• We define a key abstraction, the Flow Graph, to represent

encrypted flows, which features a general representation
for diverse traffic, rich features and encryption protocol
independence.

• We propose a feature selection algorithm, which mea-
sures the distribution differences of features by evaluating
header fields and selecting stable fields in environment
shifts.

• We design an encrypted traffic classifier based on GNN,
which accurately learns the internal structure and node
attributes of the Flow Graph from the raw traffic.

• We conduct experiments using publicly available datasets
for attack detection, malware detection and our own col-
lected dataset for application classification. Our method
outperforms state-of-the-art methods, increasing accuracy
by 6.85% over pre-training methods and by 15.84% over
traditional deep learning methods.

• We evaluate the effects of environment shifts on encrypted
traffic classification. The results show that as the envi-
ronment shifts, all other methods’ accuracy decreases,
whereas our JSD-based feature selection algorithm
increases accuracy by 7.44%.

II. RELATED WORK

A. Methods on Encrypted Traffic Classification

1) Statistics-Based Methods: Statistics-based methods clas-
sify encrypted traffic using features like flow duration and
packet count, applying machine learning to distinguish traffic
types. Draper-Gil et al. [3] use time-related features and
the C4.5 algorithm for classifying 12 service types. Other
works propose features like packet count, peak, and time
for encrypted web classification [4], [5], and enrich analysis
with unencrypted field data for identifying malicious applica-
tions [6], [7]. Ede et al. [11] highlight the use of temporal
correlations among destination-related features for generating
application fingerprints. Feng et al. [33], [34] utilize the ratio
of inbound traffic volume to outbound traffic volume and
implement an enhanced KNN algorithm to achieve explainable
DDoS attack detection. Feng et al. [35] aggregate multiple traf-
fic flows and generate a fingerprint matrix to classify social bot
traffic from real online social network user traffic. However,
these methods face limitations including high time latency
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TABLE I
THE COMPARISON WITH THE EXISTING CLASSIFICATION METHODS FOR ENCRYPTED TRAFFIC CLASSIFICATION

from processing complete flows, strong feature dependency
limiting cross-protocol classification, and a lack of structural
feature consideration, reducing accuracy under environment
shifts.

2) Byte-Based Methods: Byte-based methods classify
encrypted traffic by feeding raw bytes into neural networks,
avoiding manual feature extraction. Wang et al. [12], [13] use
the first 784 bytes with CNNs for feature learning in malware
and encrypted app classification, while Cui et al. [14] improve
spatial and byte feature analysis using CapsNet. Han et al. [15]
use Transformers on n-gram frequency vectors for flow feature
learning. Lin et al. [16] and Zhao et al. [30] introduce pre-
training models for generic traffic representation learning in a
few-shot context. Byte-based methods simplify feature extrac-
tion but face challenges in cross-protocol classification due to
plaintext fields in application protocols. These methods may
not fully utilize byte information, including timestamps that
risk overfitting and hamper generalization across environment
shifts. Additionally, while focusing on spatial and temporal
traffic byte features, they neglect structural aspects.

3) Sequence-Based Methods: Sequence-based methods uti-
lize packet length and time interval sequences, applying
models like LSTM and Encoder-Decoder to understand
sequence relationships. Ramezani et al. [17] use the server
name from Client Hello packets for fingerprints. Shapira and
Shavitt [18] develop FlowPic, an image from packet size
and arrival times, analyzed with CNN. Liu et al. [19] intro-
duce FS-Net, leveraging LSTM-based Encoder-Decoder to
explore packet length sequences for classification. Akbari et al.
[36] combine bytes, statistics and sequences features to
achieve classification. Guthula et al. [37] integrate multi-level
sequences of packets, bursts, and flows to construct traffic
tokens for pretraining and fine-tuning the foundation model.
Sequence-based methods analyze packet relationships in a flow
but face challenges with environment shifts like network con-
gestion, bandwidth changes, and application updates, affecting
sequence consistency and accuracy across environments. Addi-
tionally, they sort by packet arrival time, missing varied packet
structure representations.

B. Graph-Based Methods on Traffic Analysis

Graph construction methods are task-specific. For intru-
sion detection, IPs or domains serve as nodes, with edges

representing communication for anomaly detection. However,
this approach is unsuitable for general encrypted traffic clas-
sification. Fu et al. [23] use network interaction graphs for
unsupervised anomaly detection via clustering loss but is not
suited for multi-class classification. Similarly, Fu et al. [24]
build a heterogeneous graph to detect host infections based on
temporal-spatial features, but this approach lacks flexibility
for application classification since a host can produce diverse
traffic types. In application classification, graphs model com-
munication relationships for traffic classification. Pham et al.
[25] use IPs and ports as nodes, converting app traffic into
a graph for fingerprinting, but it assumes uniform traffic
labels, limiting it to endpoint classification rather than gateway
analysis. Shen et al. [20] construct flow-specific graphs with
packet length and direction, using a GNN to learn flow
structures, though simple node features reduce effectiveness
in complex networks. Overall, IPs are mainly used as nodes
to construct network interaction graphs for analysis. However,
they have limitations in general traffic classification tasks, such
as classification scenarios and deployment locations.

C. Comparison With Existing Classification Methods

We compare FG-SAT with related classification methods,
focusing on four performance aspects, as shown in Table I.

Low latency takes into account both the feature construction
time and the model prediction time. Generally, a longer flow
aggregation time is required for feature calculation on the com-
plete flow, resulting in higher latency. Additionally, complex
models with longer prediction times can also contribute to
higher latency. As a result, 1dCNN, FlowPic, and GraphDApp
can achieve low latency in both feature construction and model
prediction. Lightweight performance considers memory and
computation requirements, often determined by the model’s
complexity. FlowPrint, 1dCNN, FlowPic, RF and GraphDApp
employ models with fewer parameters and simpler compu-
tations, thus offering a lightweight advantage. Cross-protocol
capability is essential for general classification across multiple
protocols. Methods using the complete flow content, like
1dCNN, CapsNet, and GTID, face challenges with cross-
protocol classification due to embedded application-specific
content. However, ET-BERT and YaTC overcome this by
leveraging extensive unlabeled data to pre-train a model that

Authorized licensed use limited to: University of Southern California. Downloaded on November 16,2025 at 21:45:44 UTC from IEEE Xplore.  Restrictions apply. 



CUI et al.: FG-SAT: EFFICIENT FLOW GRAPH FOR ENCRYPTED TRAFFIC CLASSIFICATION 5329

Fig. 2. The framework of FG-SAT, including 1. Flow Graph construction, 2. JSD-based feature selection, 3. GraphSAT for encrypted traffic classification.

achieves cross-protocol performance. Strong generalization
reflects the method’s adaptability across different data dis-
tributions or network conditions. Among related methods,
ET-BERT and YaTC achieve generalized flow representation
through pre-training on large unlabeled traffic datasets, while
Rosetta and RF enhance generalization through data augmen-
tation and robust representation.

In contrast, FG-SAT is designed with practical deployment
considerations in mind, achieving a balance of low latency,
lightweight structure, cross-protocol capability, and strong
generalization. This integrated approach makes FG-SAT well-
suited for real-world applications.

III. PROBLEM DESCRIPTION AND CORE IDEA

A. Problem Description

In this paper, we classify encrypted traffic into types such as
application, attack, and malware. Encrypted traffic consists of
client-server packets encrypted with protocols like TLS, SSH,
and Tor, obscuring content while leaving some header informa-
tion visible. We treat bidirectional flow, defined by five-tuple
information (source IP, destination IP, source port, destination
port, transport protocol), as the classification object, modeling
each flow as a graph for classification using a GNN-based
method.

Moreover, we focus on the traffic classification at the
firewall and local ISP network nodes, which are typically
deployed in enterprise networks. These nodes are primarily
responsible for identifying network-side attacks, such as DDoS
or port scanning. Therefore, our method specifically targets
the detection of network-based attacks. Additionally, our goal
is to design an end-to-end system that captures simple traffic
information at the edge of the enterprise network for traffic
classification. This system ultimately supports resource opti-
mization and security monitoring within enterprise networks
through encrypted traffic classification.

B. Core Idea

We introduce FG-SAT to achieve efficient encrypted traffic
classification, as shown in Figure 2. Firstly, we define a

key abstraction, the Flow Graph, that can represent multi-
ple relationships between packets within the same flow and
contains rich node attributes. It comprehensively mines the
statistical, sequential, and structural features of encrypted
traffic. Secondly, we propose a novel JSD-based feature selec-
tion algorithm for environment shifts. It can evaluate and
select a stable set of features in dynamic and variable traffic
environments. Finally, we establish a GNN-based encrypted
traffic classifier, named GraphSAT, which fully explores the
internal relationships between different nodes within the Flow
Graph and rich node attributes, achieving efficient encrypted
traffic classification.

During Flow Graph construction, each flow is viewed as
a graph, capturing its statistical, sequential, and structural
features for a comprehensive feature representation. Packets
serve as nodes, with relationships defined by transport layer
mechanisms and node attributes derived from header fields like
packet length, arrival time, direction, TTL, and window size.
These attributes are essential for encrypted traffic classification
[38]. The transport layer’s window size, vital for classification,
indicates the communication type, with the TCP protocol’s
sliding window mechanism adjusting for efficient, reliable
transmission tailored to the application’s needs, such as larger
windows for streaming traffic to ensure high throughput. To
depict the flow’s internal structure, we establish two types of
relationships:

• Window relationship: The client or server sends multiple
packets continuously, and these packets are connected in
sequence based on their arrival time to form the window
relationship.

• Acknowledgment relationship: The client or server
acknowledges the received packets so that the packet
and its corresponding acknowledgment packet form the
acknowledgment relationship.

Due to the environment shifts, including changes in applica-
tion configuration and network environment, network traffic is
in a state of constant change, causing traditional encrypted
traffic classification methods to lose accuracy [27], [39].
To address this, we introduce a JSD-based feature selection
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algorithm that assesses feature stability across different envi-
ronments by measuring inter-class and extra-class distribution
differences with JSD. This algorithm helps select stable dis-
tribution features as final node attributes amidst environment
shifts.

We also develop GraphSAT, a GNN-based classifier, com-
bining GraphSAGE and GAT to analyze Flow Graph’s
structure and node attributes. GraphSAGE samples neighbors
to enhance generalization and reduce memory use, while
GAT assesses neighbor importance. GraphSAT effectively and
accurately classifies encrypted traffic types.

IV. CONSTRUCTION AND ANALYSIS OF FLOW GRAPH

In this section, we describe the flow graph construction (as
shown in module 1 of Figure 2) and analysis on flow graph.

A. Flow Graph Construction

To achieve an end-to-end encrypted traffic classification, we
convert the raw traffic into the Flow Graph. Firstly, we aggre-
gate traffic based on flow granularity. In long-term services
such as file transfers or malicious C&C communication, the
duration of a flow can be last for several hours. In order to
perform efficient traffic classification, we only extract the first
n packets of a flow to establish a Flow Graph, where n is
considered a hyperparameter of our method.

After traffic aggregation, we construct the Flow Graph
consisting of no more than n packets. In this paper, a Flow
Graph is defined as G(V, E) consisting of n nodes and m
edges. V = {v1, v2, . . . , vn} is the set of nodes, with each node
representing a packet within the flow. The node attributes of
the node v, denoted as xv, are a vector representation, includ-
ing packet header, ethernet header, IP header and TCP/UDP
header. We delete Mac and IP addresses, convert hexadecimal
values to decimal and normalize in the preprocessing step.
However, some fields may not be effective in environment
shifts. Therefore, we use the JSD-based feature selection
algorithm to evaluate and select the stable fields as the final
node attributes, with details provided in Section V.

E = {e1, e2, . . . , em} is the set of edges, where each e ∈ E
represents the relationship between packets, including window
and acknowledgment relationships, defined as follows:
• Window relationship: When multiple packets are sent

continuously from sender to receiver, they connect in
sequence by arrival time, forming a window relationship.
All packets in a window are contiguous and share the
same direction. They also share the same ACK number.

• Acknowledgment relationship: When the receiver
acknowledges received packets, these packets and their
corresponding acknowledgment packet form an acknowl-
edgment relationship, with packets traveling in opposite
directions. For TCP, this relationship is based on SEQ and
ACK numbers. For UDP, adjacent packets in opposite
directions are considered to have an acknowledgment
relationship.

We analyze TCP and UDP flows to understand their trans-
mission behaviors and Flow Graph construction. In TCP flows
(Figure 3), packets are graph nodes represented by header

Fig. 3. An example of Flow Graph on TCP flow. Packets are sorted according
to their arrival time, and we use two colors to denote relationships. Orange
represents the window relationship, while blue indicates the acknowledgment
relationship.

Fig. 4. An example of Flow Graph on UDP flow. Packets are sorted according
to their arrival time, and we use two colors to denote relationships. Orange
represents the window relationship, while blue indicates the acknowledgment
relationship.

fields. Packets within the same window share direction, conti-
nuity, and ACK number, forming window relationships based
on arrival times. Acknowledgment relationships occur when
the receiver’s ACK matches the sender’s SEQ plus packet
length. Thus, nodes in the same window, like nodes 5-9, share
window and acknowledgment relationships, often connected
to a common node.

For UDP flows (Figure 4), lacking SEQ and ACK fields,
TCP’s reliability mechanisms are absent. Here, packets with
shared direction and continuity form a window, and adjacent
packets in opposite directions have acknowledgment rela-
tionships. In both TCP and UDP, windowed nodes share
acknowledgment ties with a specific node, simplifying UDP
Flow Graph construction.

B. Analysis on Flow Graph

In this section, we describe and compare the Flow Graphs of
different encrypted traffic types. We focus on the overall graph
structure rather than node attributes. Based on the definition
of Flow Graph mentioned above, we construct Flow Graphs
for four types of encrypted traffic, Bot, DoS, Email, and
Streaming, as shown in Figure 5. It can be seen that different
types of encrypted traffic have different graph structures. Bot
traffic is primarily controlled by streamlined commands, so it
has a small window size and frequent acknowledgment. DoS
attack sends packets with large window size at the beginning
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Fig. 5. Examples of Flow Graph with different labels. Flow graphs with different labels exhibit significant structural differences.

of the TCP connection. Emails generally transmit plaintext
content, thus, the upload and download windows are similar
in size. Streaming servers typically send large window size
packets to clients because they download data more than
they upload. Thus, different types of traffic exhibit different
internal transmission structures based on the content of their
upper-layer applications. Flow Graphs can clearly represent
the internal structure of traffic through the edge relationships.

V. JSD-BASED ALGORITHM FOR FEATURE SELECTION

In this section, we introduce a JSD-based feature selec-
tion algorithm (as shown in module 2 in Figure 2) to
assess inter-class and extra-class distribution differences under
environment shifts, selecting stable features for accurate rep-
resentation. JSD measures similarity between two probability
distributions, addressing the asymmetry of KL divergence [40].
Given two distributions P and Q, with density functions p(x)
and q(x) at point x, JSD is defined as follows:

JS D(P,Q) =
1
2

(DKL(P||M) + DKL(Q||M)) (1)

DKL(P,Q) =
X

i

P(i) log
P(i)
Q(i)

(2)

M =
1
2

(P + Q) (3)

where DKL denotes the KL divergence, and M is the intermedi-
ate distribution between P and Q. The JSD value ranges from
0 to 1, with 0 indicating that the two distributions are identical
and 1 signifying both distributions are completely different.

The JSD-based feature selection algorithm is described in
Algorithm 1 for multi-class classification tasks. Note that
we only use labeled data from the training set for feature
evaluation and selection. We evaluate the inter-class and extra-
class JSD of each feature for every class. We create three
datasets from the training set: TI and TII for evaluating the
inter-class JSD of the traffic, and TI and TIII for evaluating the
extra-class JSD. For example, when we evaluate the difference
in feature distribution between “browsing” and other labels, we
can divide “browsing” traffic into two non-overlapping datasets
TI and TII based on shift factors.2 Specifically, we randomly

2The shift factor refers to the internal variables and their values that
cause environment shifts, such as access content (Blog, Map, Picture, Video),
bandwidth (20Mbps, 100Mbps).

Algorithm 1 JSD-Based Feature Selection Algorithm
1: Input: Training set data T, label L, candidate feature set

F, shift factor EL (optional), number of samples for each
class Len.

2: Output: Stable feature set under environment shifts Z.
3: Variables:
4: TI ,TII ,TIII ← subsets of T, all three mutually exclusive.
5: ELI , ELII ←: subsets of EL, two are mutually exclusive.
6: FD ←: JSD difference matrix, FD[ f , l] denotes the JSD

difference of label l ∈ L in feature f ∈ F.
7: procedure JSD DIFFERENCE CALCULATION(T, L, EL, F)
8: ELI , ELII ← two empty lists.
9: if EL is True then

10: Randomly divide EL into ELI and ELII , which of
them have different environment settings.

11: end if
12: for l in L do
13: TI ← data labeled as l and el belongs to ELI .
14: TII ← data whose label is l and el belongs to ELII .
15: T III ← data whose label is not l.
16: for f in F do
17: FD[ f ][l]← JS D(TI[ f ],TII[ f ])−

JS D(TI[ f ],TIII[ f ])
18: end for
19: end for
20: return FD.
21: end procedure
22: procedure STABLE FEATURE SELECTION(FD, Len)
23: for fd in FD do
24: di f f ←

Pn
i=1 f di × Leni, where n is the number

of types.
25: if di f f < 0 then
26: Add the feature f to Z.
27: end if
28: end for
29: return Z.
30: end procedure

split the factors of “browsing” into two non-overlapping sets:
ELI and ELII , as shown in Table II. Subsequently, we allocate
the traffic belonging to ELI into TI and the traffic belonging
to ELII into TII . If there is no factor present, TI and TII are
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TABLE II
THE STATISTICS OF EXPERIMENTAL DATASETS

obtained by randomly dividing “browsing” traffic. In contrast,
TIII is the traffic of other labels, in this example, that include
chat, email, file and streaming.

We calculate the inter-class and extra-class JSD for each
feature using TI , TII , and TIII to assess feature stability across
environments. A feature is retained if its inter-class JSD is
smaller than its extra-class JSD, indicating stability. For multi-
class classification, we evaluate overall feature stability across
classes, weighted by sample count per class.

In this paper, we use header fields as node attributes, not-
ing their distribution can vary across different environments.
For instance, the type of content in instant messaging, like
text or multimedia, impacts packet length distribution, and
network bandwidth influences arrival time fields. To address
this, we apply a feature selection algorithm described in
Algorithm 1 for encrypted traffic classification tasks, choosing
stable header fields as final node attributes to accurately
characterize encrypted traffic.

VI. GRAPHSAT CLASSIFIER FOR ENCRYPTED TRAFFIC
CLASSIFICATION

In this section, we describe the GraphSAT classifier (as
shown in module 3 of Figure 2). We provide a general
overview and a detailed description of its architecture.

A. Overview

To deeply mine the rich feature representation and inter-
nal structure relationships of the Flow Graph, we propose
GraphSAT, as shown in Figure 2. GraphSAT is a GNN-based
model to whole-graph classification. The key steps of GNNs
performing whole-graph classification are as follows:
• Node embeddings: GNNs first embed each node in

the graph. Typically, It is accomplished by propagating
and aggregating information between the node and its
neighbors.

• Graph embedding: GNNs need to learn a global rep-
resentation of the graph from the node embeddings. The
graph embedding captures the structural information and
features of the entire graph.

• Classification: The graph embedding is fed into a fully
connected layer to predict the graph’s category.

GraphSAT integrates GraphSAGE and GAT to deeply learn
the internal structure of the Flow Graph, and can efficiently and
accurately classify encrypted traffic types. Firstly, GraphSAT
introduces GraphSAGE to aggregate nodes through neigh-
bor sampling, which effectively reduces memory usage and
computation time. Additionally, through neighbor sampling,
we transform the direct transductive node representation into
an inductive node representation, which can effectively pre-
vent overfitting during training and enhance generalization
capability. Secondly, GraphSAT introduces GAT to learn the
relationships between nodes. GAT assigns different weights
to neighbors through attention mechanism [41], which can
capture important neighbors while weakening the correlation
of low-relevance neighbors. Therefore, we use GraphSAGE
and GAT to learn the node embeddings, and then we get the
graph embeddings by the mean pooling and finally classify
them by the softmax function.

B. GraphSAT Architecture

GraphSAT takes the Flow Graph as input and learns the
internal structure features and rich node attributes to achieve
efficient and accurate encrypted traffic classification. The
structure of GraphSAT mainly consists of GraphSAGE Block,
GAT Block, Readout, and Classifier, which we will introduce
below.

1) GraphSAGE Block: GraphSAT takes the Flow Graph as
input and learns the internal structure features and rich node
attributes to achieve efficient and accurate encrypted traffic
classification. Firstly, we use GraphSAGE to gather local node
information in the Flow Graph and compute node embeddings.
It learns node representations by sampling and aggregating
features from each node’s local neighbors. The GraphSAGE
block consists of two steps: neighbor sampling and feature
aggregation.

Neighbor sampling: For each node, a fixed number of
neighbors S is sampled to ensure efficient computation. It
defines a hop count K for neighbor sampling, enhancing
distant neighbor information capture. We set K = 2, sampling
S 1 first-order and S 2 second-order neighbors for each node.

Feature aggregation: To create the target node’s embed-
ding, the feature vectors of sampled neighbors are averaged
from second-order to first-order, concluding with the target
node. Average aggregation combines neighbor embeddings
dimension-wise, followed by a non-linear transformation,
defined as follows:

hk
v = σ(W ·MEAN(hk−1

v ∪ hk−1
u ),∀u ∈ Nv) (4)

where hk
v is the k-th layer node v feature vector, Nv is v’s

neighbor set, σ denotes the activation function, and W is the
k-th layer’s trainable weight matrix.

2) GAT Block: We obtain the first layer of node embed-
dings using GraphSAGE. Next, we further calculate node
importance and generate new embeddings using GAT. It
assigns different learning weights to different neighbors for
learning the interrelationships between nodes. GAT Block
consists of two processes, calculating attention coefficients and
feature aggregation.
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Attention coefficient: Each attention coefficient is learned
through the self-attention mechanism, where each node in the
graph learns the weight for each of its neighbors based on
their respective feature vectors. The definition of the attention
coefficient is as follows:

αi, j =
exp

�
LeakyReLU (a[Whi||Wh j])

�P
k ∈ Ni exp

�
LeakyReLU

�
aT [Whi||Whk]

�� (5)

where αi, j represents the attention coefficient for the edge
between nodes i and j, W is a weight matrix, hi and h j are
the feature vectors for nodes i and j, respectively, Ni is the
set of neighbors of node i, || represents concatenation, and
LeakyReLU is the leaky rectified linear unit activation func-
tion. The vector a is a learnable parameter vector that is shared
across all nodes and is used to calculate the compatibility score
between node attributes.

Feature aggregation: According to the attention coefficient,
we aggregate the node attributes by weighting and summing
them to obtain the embedded representation of the aggregated
node. It is defined as follows:

h′i = σ

0@X
j∈Ni

αi jWh j

1A (6)

where h′i is the new feature output by GAT for each node
i, which incorporates neighbors information, and σ is the
activation function. In addition, we use multi-head attention
to enhance the node attributes, which is defined as follows:

−→
hi =



K
k=1h(k)

i (7)

where K is the number of attention heads. The final output
−→
hi

is the concatenation of the outputs from all attention heads.
3) Readout: After the GraphSAGE and GAT processing,

we generate node embeddings for the Flow Graph. To repre-
sent the whole graph, we use a global mean pooling to derive
the graph’s overall representation vector, defined as:

R(H) = σ

 
1
N

NX
i=1

hi

!
(8)

where R(H) is the whole graph’s embedding, hi represents
the i-th node’s feature, and σ refers to the sigmoid function.

4) Classifier: The classifier consists of dropout, linear, and
softmax layers to prevent overfitting and classify encrypted
traffic. Dropout layers randomly omit nodes to reduce interac-
tions and overfitting, serving as regularization. Linear layers
map high-dimensional data to a lower-dimensional label space,
with the softmax layer finalizing classification. We concentrate
on classifying encrypted traffic according to application type,
attack type and malware type.

VII. EXPERIMENT AND EVALUATION

A. Experiment Setting

1) Task and Datasets: We evaluate our proposed method
through four encrypted traffic classification tasks:

Application classification and Application shift classi-
fication: The aim is to identify and classify the types of
applications transmitted in encrypted traffic, such as chat,

email and streaming. To evaluate environment shifts, we
collect a new application dataset, APP-SHIFTS, capturing
encrypted application traffic in a campus network. When a
user accesses an encrypted application on a PC, the generated
traffic is saved on a data server using a traffic capture tool.
Environment shifts are simulated by a total of 72 factors,
including content, bandwidth, and resolution. The dataset is
collected using a combination of manual interactions and
scripted actions. Manual interactions involve engaging with
specific applications, such as reading emails in Outlook. Mean-
while, scripts are employed to control the shift factors and
execute specific actions with the applications. For example,
a script may randomly generate text content and send it
via WeChat, simulating user interactions while capturing the
associated traffic. In the application shift classification task,
training and test sets have non-overlapping shift factors to
simulate environment shifts. In contrast, in the traditional
application classification task, traffic is randomly divided into
training and test sets ignoring environment shifts. Dataset
statistics are summarized in Table II.

Attack detection: It is identifying and detecting malware
activities in encrypted traffic, such as Zeus, Emotet. We
use the publicly available CIC-IOT2023 [42] dataset, which
contains benign and the most up-to-date common attacks
resembling real-world traffic. To construct environment shifts
in attack detection, we partition data according to the IP
pair method, ensuring that traffic from the same IP pair
exists only in either the training set or the test set. Addi-
tionally, we enhance the realism of environment shifts by
supplementing the “Benign” class traffic with APP-SHIFTS
dataset.

Malware detection: It is detecting network attack behaviors
in encrypted traffic, such as DDoS, port scanning. We use
the publicly available Malware Capture Facility Project [43]
dataset to evaluate the proposed method’s capability in mal-
ware detection. From this dataset, we select six well-known
types of malware, including Zeus, Dridex, DownloadGuide,
Wisdomeyes, Wannacry, and Trickbot, along with benign
HTTPS traffic. The malware samples vary by capture time
and variants to reflect environment shifts, while the benign
traffic includes visits to different types of websites to reflect
environment shifts.

2) Baseline Methods: To evaluate the performance of FG-
SAT, we summarize the following baseline methods:
• FlowPrint [11]: It is a semi-supervised mobile app

fingerprinting method using temporal correlations.
• 1dCNN [13]: It uses the first 784 bytes of encrypted flows

and applies 1dCNN for classification.
• CapsNet [14]: It leverages CapsNet to learn spatial and

location features of encrypted flows.
• GTID [15]: It computes n-gram frequencies and uses

transformers for feature learning.
• ET-BERT [16]: It is a pre-training model for generic

traffic representation and fine-tuning.
• YaTC [30]: It is an Autoencoder-based traffic classifica-

tion with hierarchical flow representation.
• FlowPic [18]: It creates flow images from packet size

and time, which are classified via CNN.
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TABLE III
THE RESULTS AND COMPARISON WITH BASELINE METHODS

TABLE IV

COMPARISON RESULTS OF TIME AND PARAMETERS WITH BASELINE METHODS

• FS-Net [19]: It uses packet length sequences and an
LSTM-based Encoder-Decoder.

• Rosetta [31]: It enhances TLS classification with TCP-
aware augmentation and self-supervised learning.

• RF [32]: It is a CNN-based Tor traffic fingerprinting with
traffic aggregation matrix.

• GraphDApp [20]: It is a GNN-based method learning
structural relationships for DAPP identification.

3) Evaluation Metrics and Implementation Details: We
assess FG-SAT’s performance using Accuracy (Acc), Preci-
sion (Pre), Recall (Rec), and F1, employing macro average
to mitigate bias from class imbalances. Prediction speed is
gauged by the time taken to predict 100 flows, and model
complexity and memory usage are evaluated through trainable
parameters. Our experiments rely on 5-fold cross validation
for robustness.

For Flow Graph construction, we limit each flow to
20 packets. In GraphSAT, hidden layers for both GraphSAGE
and GAT are set at 128. We use a batch size of 128, a
learning rate of 0.003, and cap epochs at 100, incorporating
a 0.7 dropout ratio. Parameter fine-tuning details are in sec-
tion VII-G.

The model has up to 44,551 parameters and is suitable
for deployment on various hardware platforms. We train it
on an Ubuntu 22.04 system with an NVIDIA Tesla P100-
PCIE-16GB GPU. Due to its small size and low resource
consumption, FG-SAT demonstrates strong deployability.

B. Comparison With Baseline Methods

We evaluate FG-SAT and baseline methods in application
classification, application shift classification, attack detection,
and malware detection, focusing on accuracy, classification
speed, and model parameters. Moreover, we compare FG-
SAT, utilizing JSD-based feature selection, with FG-SAT full
without feature selection. Results are detailed in Table III and
Table IV.

In terms of accuracy, we observe that FG-SAT shows the
best performance in all encrypted traffic classification tasks,
reaching an accuracy of 0.8508 and 0.9416 in the attack
classification and malware detection, 6.85% and 6.33% higher
than the best baseline methods. The accuracy of 0.9516 in
application classification is 3.02% higher than the best baseline
method, and the accuracy of 0.8979 in the application shift
classification is 3.65% higher than the best baseline method.
ET-BERT achieves the highest classification accuracy among
the baseline methods. ET-BERT leverages a large corpus of
traffic data during its pre-training phase, which allows it
to capture complex features and achieve high accuracy in
classification tasks. The superior performance of ET-BERT is
therefore largely driven by its extensive pre-training on a broad
dataset, which gives it an edge in recognizing encrypted traffic
patterns. Despite this, FG-SAT significantly outperforms all
other traditional baseline methods in terms of both efficiency
and resource usage, making it more practical for real-time
deployment and limited computational resources.

In terms of time and parameters, we investigate the time
it takes to predict a flow. FG-SAT takes only 4.82ms to
predict 100 flows, which is the shortest time than baselines. It
indicates that FG-SAT can simultaneously classify encrypted
traffic quickly. Moreover, we count the number of trainable
parameters during the model training, and the number of
parameters in FG-SAT is only second to GraphDAPP, which
has just one node attribute. Moreover, the number of param-
eters in FG-SAT is 3 out of 10,000 of that in ET-BERT.
Thus, FG-SAT can achieve the lightweight encrypted traffic
classification, which greatly reduces the memory requirements
of devices in practical deployments.

Furthermore, comparing FG-SAT with FG-SAT full, we
observe that after JSD-based feature selection, FG-SAT is able
to achieve better performance. In particular, the accuracy of
FG-SAT is 7.44% higher than that of FG-SAT full under
environment shifts. Thus, the JSD-based feature selection
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Fig. 6. Differences in data distribution under various environment shifts.

algorithm selects robust features and improve the generaliza-
tion ability of the method.

C. Analysis on Environment Shifts and JSD-Based Algorithm

1) Analysis on Environment Shifts: In the collected
encrypted traffic application classification dataset, environment
shifts are constructed by altering various factors. In this
section, we analyze the impact of these factors on data distri-
bution. Different shift settings are implemented for five types
of encrypted traffic, such as bandwidth, application, and action.
Header fields are selected as node attributes in this paper,
therefore, the distribution of packet header fields is compared
to clearly reflect data distribution differences. Since header
fields represent multi-dimensional features, data distribution is
measured by comparing the distance of packets to the cluster
centroid through clustering methods. Note that we use cluster-
ing only to obtain the centroid for calculating data distribution,
not for classification. Therefore, we set the number of clusters
to 1. For instance, under the content shift of “browsing” traffic,
K-means [44] clustering is performed on the traffic of two
groups of content, the cluster centroid is obtained, and then
the Euclidean distance of the data packet to the centroid is
calculated. This distance characterizes the distribution status of
packets. Ultimately, kernel density estimation curves [45] are
employed to statistically analyze the distribution of Euclidean
distances of the two types of content traffic, representing traffic
distribution differences under content shift.

Figure 6 illustrates the traffic distribution statistics for each
environmental shift. The “none” scenario refers to traffic gen-
erated without environment shift, representing traffic generated
under stable conditions, without changes in user behavior,
application configurations, or network quality. In this case,
the distributions of the two groups nearly overlap under stable

Fig. 7. Mean distances (Euclidean, Cosine, Manhattan) for datasets with and
without environment shifts. Darker colors indicate greater distances.

conditions. However, this ideal situation is rarely seen in real-
world scenarios. In all shift settings, the data distributions
show varying degrees of divergence, with content, application,
resolution, and playback shifts causing significant differences.
These shifts lead to distinct distributions, which reduce the
accuracy of encrypted traffic classification.

Moreover, we use three distance metrics for environ-
ment shifts, including Euclidean distances, Cosine distances,
and Manhattan distances. As shown in Figure 7, it reveals
that all distance metrics are greater under environment
shifts than without environment shift. This indicates that
the factors can produce environment shifts at the traffic
level.

2) Analysis on JSD-Based Algorithm: In this section, we
analyze the JSD-based algorithm with specific browsing traffic
environment shifts scenarios to observe the impact on the
different fields. We set four kinds of environment shifts for
Browsing traffic, content, bandwidth, browser, and speed.
Content shifts refer to browsing different types of pages,
such as blogs, pictures, and maps. Browser shifts refer to
accessing pages with different browsers, such as Google and
Edge. Bandwidth shifts refer to accessing pages at varying
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TABLE V

COMPARISON RESULTS WITH BASELINE FEATURE SELECTION ALGO-
RITHMS

bandwidths, and speed shifts refer to opening new pages in
different time intervals.

We classify features as robust or unstable based on inter-
class and extra-class JSD comparisons. As shown in Figure 3,
blue indicates stable features (smaller inter-class differences),
while red indicates unstable features (larger inter-class differ-
ences). A color gradient represents the magnitude of the JSD
difference, with stronger colors indicating larger differences.

In the “None” environment shift scenario, namely when the
environment shift does not happen, the inter-class distribution
differences for all fields are smaller than the extra-class
distribution differences, indicating that none of the fields have
a negative effect on browsing traffic identification. When the
environment shifts, we find that each shift scenario produces
some unstable features. Meanwhile, both the packet length and
time features, commonly used in existing studies, are greatly
affected. This highlights the sensitivity of these features to
environment shifts.

Overall, we observe that IP header fields such as ip.dsfield,
ip.id, ip.flags, ip.ttl are robust fields across environment shifts,
and therefore important for browsing traffic identification.
However, across shift scenarios, we find that content differ-
ences have the greatest impact on features, with only 20 fields
being robust, while bandwidth differences appear to have the
least impact on the fields. Content differences directly alter the
intrinsic characteristics of network traffic, such as packet size
and transmission patterns, leading to changes in more field
distributions. In contrast, bandwidth differences only affect
transmission speed, resulting in a relatively smaller impact on
field distributions.

3) Comparison With Baseline Feature Selection: The JSD
feature selection algorithm aims to evaluate feature distribution
differences and select robust features under environment shifts.
In this section, we compare the JSD algorithm with other
feature selection methods, including Chi-Squared Test [46],
L1-Regularized Logistic Regression (L1-LR) [47], Recursive
Feature Elimination (RFE) [48], and Random Forest Feature
Importance (RFFI) [49]. To clearly compare their performance
with that of the JSD algorithm, we ensure that the dimensions
of their respective features remain consistent with the dimen-
sions of the JSD features. While the L1-LR indirectly achieves
feature selection by reducing the coefficients of some features
to zero, we maintain its original feature selection dimensions.

As shown in Table V, none of these algorithms outper-
forms JSD under environment shifts. Only L1-LR yields
better classification results than without feature selection,
while the others result in lower accuracy. Therefore, the JSD
algorithm outperforms current state-of-the-art methods in these
conditions.

TABLE VI

THE RESULTS OF ANALYSIS ON GRAPHSAT AND COMPARISION WITH
GCN [50], GRAPHSAGE [28], AND GAT [29]

D. Analysis on GraphSAT

In this section, we conduct a comprehensive analysis of
the GraphSAT model in relation to other traditional GNN
models, specifically, GCN, GraphSAGE, and GAT. Our goal is
to evaluate the efficacy and efficiency of our proposed model
in the context of encrypted traffic application classification.
The results shown in Table VI demonstrate that GraphSAT
exhibits better performance across various evaluation metrics,
including Pre, Rec, F1, and Acc, highlighting its effectiveness
in handling encrypted traffic classification tasks.

Furthermore, our analysis reveals that GraphSAT offers
a competitive balance between accuracy and computational
demands. The optimal combination of accuracy, time, and
parameter count positions GraphSAT as a more favorable
choice for encrypted traffic classification in comparison to the
other GNN models.

E. Analysis on Open-World Classification

In the open-world, challenges arise not only from envi-
ronment shifts but also from the presence of unknown class
traffic, which is not seen during training. To investigate the
performance of FG-SAT in such open-world scenarios, we
incorporate an additional unknown class in the test set that
is absent from the training set. The experimental results, as
depicted in Figure 9, demonstrate some noteworthy patterns.

We observe that the prediction probability for known classes
is relatively high, with 85% exceeding 0.975. In contrast,
the prediction probability for 70% of the unknown traffic
falls below 0.975. This finding indicates that FG-SAT is
generally adept at detecting known classes with high confi-
dence. However, when confronted with unknown traffic, the
feature patterns of unknown traffic often exhibit substantial
dissimilarities compared to those of known classes, which
consequently leads FG-SAT to struggle to predict them as
one of the known classes. This results in lower classification
probabilities for unknown traffic.

Given these findings, we propose that in open-world sce-
narios, the identification of unknown traffic can be effectively
achieved by setting an appropriate threshold for the classifier.
This approach allows FG-SAT to discriminate between known
and unknown classes based on their classification probabilities.

F. Analysis on Adversarial Attack

In this section, we use the APP-SHIFT dataset for APP
classification experiments to analyze the impact of adversarial
attacks on FG-SAT model performance. Specifically, we create
training and test sets based on APP-SHIFT and generate
adversarial samples using the automatic evasion method [51].
To simulate environment shifts, the shift factors for the training
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Fig. 8. Results of JSD-based feature selection. The horizontal axis represents header fields, and the vertical axis represents specific environment shifts. The
color gradient indicates the magnitude of the JSD difference: blue for stable fields, red for unstable fields, with stronger colors representing larger differences.

Fig. 9. Open-world classification results, where the email class is removed
from training but retained as an unknown class in testing. 70% of traffic falls
below the threshold, while over 85% of known traffic is above it.

TABLE VII

THE ACCURAY RESULTS OF ANALYSIS ON ADVERSARIAL ATTACK

and test sets do not overlap. We select 3,000 samples from the
training set for adversarial testing.

For comparative experiments, we follow the configuration
in [51], using an ensemble model as the local model and
LR and FG-SAT as target models. The features for the
ensemble model and LR align with those in [51] while
FG-SAT employs the Flow Graph as traffic representation.
Adversarial samples are generated through three methods: Add
characters, Increase packets, and Change time. We assess FG-
SAT and LR on 3000 samples and the APP-SHIFT test set
under none shift, adversarial attacks, and environment shifts
conditions.

As shown in Table VII, under adversarial attacks, FG-
SAT accuracy decreases by 3.24%, while LR drops by
42.27%. Under environment shifts, FG-SAT decreases by
5.18%, and LR by 39.04%, indicating FG-SAT’s superior
robustness. We attribute LR’s instability to its reliance on
flow-level statistical features, lacking finer-grained packet
and structural details, and the shared features between the
local and target models, which raises the success rate of
attacks.

Overall FG-SAT combines Flow Graph with JS divergence
feature selection, providing stable traffic representation. It
further incorporates packet header and structural relationships,
capturing deeper traffic features to maintain high performance
under adversarial attack.

Fig. 10. The results on the maximum packet number of FG-SAT.

Fig. 11. The results on the dimension of the hidden channel of FG-SAT.

G. Parameter Tuning

1) The Maximum Packet Number: Flow duration can vary
widely, impacting model efficiency. We adjust flow aggrega-
tion time by setting a maximum packet number, the results of
which are illustrated in Figure 10. Experiments with different
packet counts show accuracy improves with higher counts up
to a threshold. Analysis indicates accuracy gains level off

beyond 20 packets, while aggregation time increases signif-
icantly. Therefore, we set the maximum packet count at 20.

2) The Dimension of Hidden Channel: A larger hidden
channel dimension enhances flow graph feature extraction and
accuracy but increases computation time. Balancing accuracy
and computational complexity is key. Through a series of
experiments, as depicted in Figure 11, we observe that as the
hidden channel dimension grows, accuracy improves up to a
point. At a dimension of 128, accuracy plateaus, indicating
an optimal balance between accuracy and processing time.
Thus, we set the hidden channel dimension at 128 for efficient,
effective encrypted traffic classification.

VIII. CONCLUSION

In this paper, we propose the Flow Graph for efficient
encrypted traffic classification, which constructs flows as
graphs to characterize the internal structure relationships and
rich node attributes. To improve the generalization of the
model to the real world, we propose a JSD-based feature
selection algorithm that is able to select robust features under
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environment shifts. In addition, we design a fusion Graph-
SAGE and GAT classifier GraphSAT, which can efficiently and
deeply learn Flow Graph features to achieve fast and accurate
classification. We comprehensively evaluate the FG-SAT in
three different scenarios of encrypted traffic classification
tasks. It shows outstanding performance and outperforms state-
of-the-art methods in terms of accuracy, time, parameters, and
generalizability.

The current method necessitates constructing Flow Graph
based on bidirectional flows, while in certain backbone net-
works, individual nodes might only capture unidirectional flow
data. This limitation inherently constrains the applicability
of the proposed method. To address this challenge, in our
future work, we will focus on refining the Flow Graph
construction methodology to enable effective adaptation to
unidirectional flow-based traffic classification. Meanwhile, we
plan to improve the Flow Graph by investigating the influence
of different edge relationships and assigning them varying
weights. Additionally, we will further investigate the ability of
FG-SAT to identify unknown categories and collect additional
real-world datasets with naturally occurring environment shifts
to further verify the method’s practical effectiveness. These
efforts will enhance the effectiveness and robustness of our
proposed method, as well as contribute to the advancement of
the field of network traffic analysis.
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[29] P. Velič ković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

[30] R. Zhao et al., “A novel self-supervised framework based on masked
autoencoder for traffic classification,” IEEE/ACM Trans. Netw., vol. 32,
no. 3, pp. 2012–2025, Jun. 2024.

[31] R. Xie et al., “Rosetta: Enabling robust TLS encrypted traffic clas-
sification in diverse network environments with TCP-aware traffic
augmentation,” in Proc. 32st USENIX Secur. Symp., USENIX Secur.,
Jul. 2023, pp. 131–132.

[32] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Subverting website
fingerprinting defenses with robust traffic representation,” in Proc. 32nd
USENIX Secur. Symp., 2023, pp. 607–624.

[33] Y. Feng, J. Li, D. Sisodia, and P. Reiher, “On explainable and adaptable
detection of distributed denial-of-service traffic,” IEEE Trans. Depend-
able Secure Comput., vol. 21, no. 4, pp. 2211–2226, Jul. 2024.

[34] Y. Feng and J. Li, “Toward explainable and adaptable detection and
classification of distributed denial-of-service attacks,” in Proc. Int.
Workshop Deployable Mach. Learn. Secur. Defense, San Diego, CA,
USA, Aug. 2020, pp. 105–121.

Authorized licensed use limited to: University of Southern California. Downloaded on November 16,2025 at 21:45:44 UTC from IEEE Xplore.  Restrictions apply. 



CUI et al.: FG-SAT: EFFICIENT FLOW GRAPH FOR ENCRYPTED TRAFFIC CLASSIFICATION 5339

[35] Y. Feng, J. Li, L. Jiao, and X. Wu, “Towards learning-based, content-
agnostic detection of social bot traffic,” IEEE Trans. Dependable Secure
Comput., vol. 18, no. 5, pp. 2149–2163, Sep. 2021.

[36] I. Akbari et al., “A look behind the curtain: Traffic classification in an
increasingly encrypted Web,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 5, no. 1, pp. 1–26, Feb. 2021.

[37] S. Guthula, R. Beltiukov, N. Battula, W. Guo, A. Gupta, and
I. Monga, “NetFound: Foundation model for network security,” 2023,
arXiv:2310.17025.

[38] S. Cui, J. Liu, C. Dong, Z. Lu, and D. Du, “Only header: A reliable
encrypted traffic classification framework without privacy risk,” Soft
Comput., vol. 26, no. 24, pp. 13391–13403, Dec. 2022.

[39] B. Anderson and D. McGrew, “Machine learning for encrypted malware
traffic classification: Accounting for noisy labels and non-stationarity,”
in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2017, pp. 1723–1732.

[40] F. Nielsen, “On a generalization of the Jensen–Shannon divergence
and the Jensen–Shannon centroid,” Entropy, vol. 22, no. 2, p. 221, Feb.
2020.

[41] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inform. Process. Syst. (NIPS), I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
Dec. 2017, pp. 5998–6008.

[42] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and
A. A. Ghorbani, “CICIoT2023: A real-time dataset and benchmark
for large-scale attacks in IoT environment,” Sensors, vol. 23, no. 13,
p. 5941, Jun. 2023.

[43] Stratosphere.(2015). Stratosphere Laboratory Datasets. [Online]. Avail-
able: https://www.stratosphereips.org/datasets-overview

[44] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A
comprehensive survey and performance evaluation,” Electronics, vol. 9,
no. 8, p. 1295, Aug. 2020.

[45] F. Kamalov, “Kernel density estimation based sampling for imbalanced
class distribution,” Inf. Sci., vol. 512, pp. 1192–1201, Feb. 2020.

[46] L. Hakim, R. Fatma, and Novriandi,, “Influence analysis of feature
selection to network intrusion detection system performance using NSL-
KDD dataset,” in Proc. Int. Conf. Comput. Sci., Inform. Technol. Electr.
Eng. (ICOMITEE), 2019, pp. 217–220.

[47] W. Li and J. Lederer, “Tuning parameter calibration for `1-regularized
logistic regression,” J. Stat. Planning Inference, vol. 202, pp. 80–98,
Sep. 2019.

[48] H. Jeon and S. Oh, “Hybrid-recursive feature elimination for efficient
feature selection,” Appl. Sci., vol. 10, no. 9, p. 3211, May 2020.

[49] J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random
forest variable selection methods for classification prediction modeling,”
Expert Syst. Appl., vol. 134, pp. 93–101, Nov. 2019.

[50] B. Jiang, Z. Zhang, D. Lin, J. Tang, and B. Luo, “Semi-
supervised learning with graph learning-convolutional networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun.
2019, pp. 11313–11320.

[51] H. Yan et al., “Automatic evasion of machine learning-based network
intrusion detection systems,” IEEE Trans. Dependable Secure Comput.,
vol. 21, no. 1, pp. 153–167, Jan. 2023.

Susu Cui received the Ph.D. degree from the School
of Cyber Security, University of Chinese Academy
of Sciences, Beijing, China, in 2024. She is cur-
rently an Assistant Researcher with the Institute
of Information Engineering, Chinese Academy of
Sciences. Her research interests include encrypted
traffic analysis and network security.

Xueying Han received the B.S. degree from Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2020. She is currently pursuing
the Ph.D. degree with the Institute of Information
Engineering, University of Chinese Academy of Sci-
ences, Beijing. Her research interests include deep
learning and intrusion detection.

Dongqi Han received the Ph.D. degree in computer
science from Tsinghua University, Beijing, China, in
2024. He is currently an Associate Researcher with
the School of Cyberspace Security, Beijing Univer-
sity of Posts and Telecommunications. His research
interests include network and artificial intelligence
security.

Zhiliang Wang (Member, IEEE) received the B.E.,
M.E., and Ph.D. degrees in computer science from
Tsinghua University, China, in 2001, 2003, and
2006, respectively. Currently, he is an Associate Pro-
fessor with the Institute for Network Sciences and
Cyberspace, Tsinghua University. His research inter-
ests include formal methods and protocol testing,
next-generation internet, and network measurement.

Weihang Wang received the Ph.D. degree in com-
puter science from Purdue University, USA, in 2018.
She is currently an Assistant Professor with the Uni-
versity of Southern California. Her research interests
include software engineering and system security.

Bo Jiang received the Ph.D. degree from Chinese
Academy of Sciences in 2016. He is currently an
Assistant Professor at with the Institute of Infor-
mation Engineering, Chinese Academy of Sciences.
His research interests include network situational
awareness, knowledge graph, and data mining.

Baoxu Liu received the Ph.D. degree from the Grad-
uate School, Chinese Academy of Sciences, Beijing,
China, in 2002. He is currently a Professor and a
Ph.D. Supervisor with the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing,
and the School of Cyber Security, University of
Chinese Academy of Sciences, Beijing. His current
research interests include network attack detection
and defense, and network security situational aware-
ness.

Zhigang Lu received the Ph.D. degree in com-
puter applications from the University of Chinese
Academy of Sciences. He is currently a Professor
with the Department of Cyber Security, University
of Chinese Academy of Sciences. He has pub-
lished more than 30 papers in top network and
security journals and conferences, including IEEE
TRANSACTIONS ON INFORMATION FORENSICS
AND SECURITY, Computer Networks, Computers
& Security, and Trustcom. His research interests
include network and system security, with a specific

focus on cyber situation awareness, intrusion detection and prevention, and
mobile terminal security.

Authorized licensed use limited to: University of Southern California. Downloaded on November 16,2025 at 21:45:44 UTC from IEEE Xplore.  Restrictions apply. 

https://www.stratosphereips.org/datasets-overview

