
When Function Inlining Meets WebAssembly: Counterintuitive
Impacts on Runtime Performance

Alan Romano
ajromano@usc.edu

University of Southern California

Weihang Wang
weihangw@usc.edu

University of Southern California

ABSTRACT
The WebAssembly standard defines a bytecode format serving as
a compilation target for languages such as C, C++, and Rust. We-
bAssembly compilers are built on top of existing compiler infras-
tructures such as LLVM and newly developed compiler toolchains
such as Binaryen, handling various new features of the WebAssem-
bly language. However, we observe that both these new and existing
infrastructures implicitly assume that the execution environments
of native and WebAssembly applications are the same, ignoring the
presence of browser compilers in the WebAssembly pipeline. This
incorrect assumption often misguides function inlining optimiza-
tions, resulting in a slower WebAssembly module when function
inlining is applied. This paper is the first to investigate the coun-
terintuitive impacts of function inlining on WebAssembly runtime
performance. We inspect the inlining optimization passes of the
LLVM and Binaryen infrastructures used in the Emscripten C/C++-
to-WebAssembly compiler. Our investigation on 127 C/C++ samples
from the LLVM test suite shows that 66 samples exhibit counterin-
tuitive behavior due to function inlining, particularly from inlining
hot functions into long-running functions. We hope our findings
motivate further work on revising existing optimizations with the
unique characteristics of WebAssembly environments in mind.

CCS CONCEPTS
• Software and its engineering→ Compilers; • Information
systems →Web applications.

KEYWORDS
WebAssembly, Function Inlining, LLVM, Binaryen, Emscripten
ACM Reference Format:
Alan Romano and Weihang Wang. 2023. When Function Inlining Meets
WebAssembly: Counterintuitive Impacts on Runtime Performance. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3611643.3616311

1 INTRODUCTION
WebAssembly (abbreviated Wasm) [34] is a low-level, statically
typed language aiming to serve as a universal compilation target
for the Web. It is designed to be fast to compile and run; to be
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616311

portable, i.e., language-, hardware-, and platform-independent; and
to have formal type and memory safety guarantees. WebAssem-
bly is supported on all four major browsers (i.e., Chrome, Firefox,
Safari, and Edge) [51] and compiles from several programming
languages, including C, C++, C#, Rust, and Go [26]. Recent studies
have shown that one out of every 600 websites use WebAssem-
bly [35] for purposes such as games [40, 69], cryptography [60, 70],
machine learning [66], and medical research [33, 38].

WebAssembly compilers leverage the same compiler infrastruc-
tures as compilers of traditional languages. For example, the Em-
scripten C/C++-to-WebAssembly compiler [10], the Rustc com-
piler [17], and Intel’s oneAPI compiler [6] all use the LLVM [7]
compiler infrastructure. Unfortunately, we observe that WebAssem-
bly compilers leverage existing infrastructures without considering
the differences between WebAssembly and native applications.

Liftoff TurboFanExecution Pipeline

JavaScript starts
Wasm module

Main Thread

$f1

$f2

1
JavaScript

calls $main

2
$main calls

$f2

4
$main calls

$f1

5

$f2 $f1

$f1

$main

$main
calls $f1

3

$f1

$f1$main

$f2 $f2

$main

JavaScript

$main

Co
m

pi
la

tio
n

Th
re

ad
s

Figure 1: Chromium tier-up process. In this example, func-
tion $main uses the Liftoff-generated code when first called
as it is the only code available. $main calls $f1 which only has
Liftoff code ready. $f2 uses the TurboFan-generated code as
it is available at the first call. On the second call to $f1, its
TurboFan-generated code is available and used for the call.

One of the substantial differences is that WebAssembly has the
additional compilation layer at runtime running within browsers,
generating the final machine code for WebAssembly instructions.
Browsers, such as Chromium [2] and Firefox [13], typically include
at least two WebAssembly compilers: a fast compiler emitting un-
optimized code and a slow compiler emitting highly optimized
code. Browsers use both compilers to ensure the machine code for
WebAssembly functions is available early and can perform faster
once the optimized code is available. When the optimized code is
ready, the code is tiered-up on the following function call invoca-
tion by replacing the unoptimized code with the optimized code.
The tiering-up process only occurs on a function call because the
unoptimized and optimized machine codes are not interchange-
able. Figure 1 illustrates the Chromium tier-up process.

https://doi.org/10.1145/3611643.3616311
https://doi.org/10.1145/3611643.3616311

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Romano and Wang

Table 1: Findings and Implications of Our Study.

Findings Implications
1 We identify counterintuitive function inlining behavior between

WebAssembly’s compilation pipeline and execution pipeline.
We show that function inlining slows WebAssembly runtime per-
formance in some samples by as much as 15.5×.

2 We find that function inlining can introduce counterintuitive
behavior in 51.97% (66/127) of the studiedWebAssembly modules.

We investigate the characteristics of the inlined functions and find
that larger code sizes can introduce the counterintuitive behavior.

3 We show that modifying Binaryen’s inlining pass to avoid inlin-
ing hot functions reduces the counterintuitive behavior in 73.21%
(41/56) of the modules.

This finding motivates further work on improving inlining heuris-
tics for hot functions.

4 We are the first study to perform an in-depth investigation into
the runtime impacts of a traditional optimization technique on
WebAssembly binaries.

Our findings can motivate future work investigating the effects of
other traditional compiler optimizations on WebAssembly mod-
ules.

This tiering-up process complicates the effects of traditional
optimization techniques such as function inlining, which moves
function code into function call sites to reduce context switches. In
doing so, function inlining reduces the number of call invocation
sites for the tiering-up process to occur. This can cause an undesir-
able side effect: slowing down the runtime performance. Figure 2
shows that function inlining leads to worse runtime performance
for samples within the LLVM test suite [22]. This figure compares
the runtimes of the samples compiled to the O3 optimization level
with function inlining enabled to runtimes of the samples with
function inlining disabled. The runtime can slow down by as much
as 15.5×. In all the samples, function inlining decreases the number
of call sites, leading to fewer opportunities for browsers to tier-up
functions to more-optimized machine code.

2m
m

.c

3m
m

.c
ad

i.c

flo
ps

.c

he
ap

so
rt.

c

he
ap

so
rt.

cp
p

him
en

ob
m

txp
a.

c

jac
ob

i-1
d-

im
pe

r.c

lin
pa

ck
-p

c.c

lpb
en

ch
.c

ns
iev

e-
bit

s.c

pu
zz

le.
c

Ree
dS

olo
m

on
.c

0

20

40

60

80

100
400
700

1,000
1,300
1,600

R
un

tim
e

%
 In

cr
ea

se

47

23
14

24

60 65 62

10

100

70
76

1,546

102

50 47
53

24

41 41 37

55

29
41 47

62
55

Runtime Number of Function Call Sites

0

20

40

60

80

100
400
700
1,000
1,300
1,600

F
unction C

all %
 D

ecrease

Figure 2: Function inlining slows runtime performance in
Chromium. Using Emscripten with the O3 optimization flag,
the green bars show the % runtime speedup in the samples
when function inlining is enabled compared towhen inlining
is disabled. The blue bars show the % decrease in the number
of function call sites when inlining is enabled.

There has been much work studying compiler optimization tech-
niques. Previous work has looked at the impacts of optimizations on
specific platforms [28] and how optimizations affect SIMD perfor-
mance [36]. Some works propose optimization selection strategies
leveraging machine learning [41, 48]. While compiler optimizations
are an active area of study, to the best of our knowledge, there
are no systematic studies on the effects of function inlining in the
WebAssembly compilation pipeline. Thus, we conduct the first em-
pirical study on the impact of function inlining on WebAssembly
runtime performance. We investigate function inlining used in Em-
scripten [10], a widely used C/C++ to WebAssembly compiler. We

also inspect the inlining passes provided by two infrastructures
used in Emscripten, LLVM [7] and Binaryen [18]. The findings and
their implications of this study are listed in Table 1.

2 BACKGROUND
2.1 WebAssembly Compilation Pipeline
We illustrate the WebAssembly compilation pipeline using Em-
scripten [10], a compiler that converts C/C++ code toWebAssembly.
Internally, Emscripten makes use of the Clang compiler [3] for its
frontend and uses components from LLVM [7] and Binaryen [18]
in its backend. Binaryen is a library providing tools to construct
compiler infrastructures targeting WebAssembly. Binaryen defines
an intermediate representation (IR) that closely models WebAssem-
bly and enables WebAssembly-specific optimizations such as IR
flattening to remove nested side effects and function reordering to
shrink the encoding of the most called functions [18, 73].

(func $a
i32.const 123
i32.const 1024
i32.store)

(func $b
call $a
i32.const 1024
i32.load
return)

(func $b
i32.const 123
i32.const 1024
i32.store
i32.const 1024
i32.load
return)

Before function inlining

int x;
function a() {

x = 123;
}
function b(){

a();
return x

}

After function inliningSource code

Figure 3: Binaryen function inlining. In the original C code,
function b calls function a. The WebAssembly code before
inlining shows how both a() and b() are separate. After in-
lining, the instructions of a() are inlined into b().

The Emscripten compilation pipeline begins by inputting the
source code files into the Clang compiler. This compiler uses its
Frontend component to parse the source files into an LLVM IR.
The IR is passed to the Middle-end component, which implements
several optimization passes, including the inline pass that performs
function inlining. The pass moves instructions of a called function
to the function call location, but first it checks to ensure that the
inlined instructions can safely replace the call. For example, inlin-
ing indirect or external calls may break the program semantics.
Additionally, the pass estimates the performance cost of inlining a
function (e.g., a heuristic on the function’s code size) to determine
if it is beneficial to inline. The Middle-end component passes the

When Function Inlining Meets WebAssembly: Counterintuitive Impacts on Runtime Performance ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

optimized IR to the CodeGen component to create a WebAssem-
bly module. Next, the module is passed to Binaryen’s wasm-opt
tool [18], which applies Binaryen’s set of optimization passes to
the module. In Binaryen, function inlining is performed by the
inlining-optimizing pass. Similar to the inline pass in LLVM, the
inlining-optimizing pass moves function instructions into the loca-
tion of the original call site if the calculated inlining cost is less than
a threshold value. Differences between these passes include the IR
structures that are inlined as LLVM can also inline its block struc-
tures. Besides, Binaryen can support partial inlining of early-return
conditional statements [18]. Figure 3 illustrates Binaryen’s function
inlining. Finally, the compilation pipeline outputs the optimized
WebAssembly binary and JavaScript support code.

2.2 WebAssembly Execution Pipeline
The generated WebAssembly module and JavaScript files are run
by a browser such as Chromium [2] or Firefox [54], which each
have different internal compilers to generate machine code for the
WebAssembly module. For example, Chromium is powered by the
V8 JavaScript and WebAssembly engine [16], which includes two
compilation engines to generate machine code for WebAssembly.
The first compiler, Liftoff [25], is a single-pass compiler that emits
machine instructions immediately after reading in a WebAssembly
instruction at the expense of the number of optimizations that it
applies. As a result, the Liftoff code can perform sub-optimally
when executed. The second compiler, TurboFan [14], is a multi-pass
compiler that applies several optimization passes to the machine
code. While TurboFan generates faster code, this compiler takes
much longer to generate code than Liftoff. To balance start-up speed
with execution performance, Chromium first generates code for
WebAssembly functions with Liftoff and immediately starts the
TurboFan compilation. When the TurboFan code for a function
is ready, the function code tiers-up by replacing the Liftoff code
with the TurboFan code. Firefox uses the SpiderMonkey JavaScript
and WebAssembly engine [13] to handle WebAssembly execution.
Similar to V8, SpiderMonkey contains two compilation engines for
WebAssembly. The first compiler,Wasm-Baseline, performs a fast
translation of WebAssembly instructions to machine code for quick
startup. The second engine, Wasm-Ion, applies optimizations on
the emitted machine code. SpiderMonkey follows the tiering-up
scheme by using Wasm-Baseline to emit machine code quickly
while Wasm-Ion generates better-performing machine code.

3 COUNTERINTUITIVE INLINING EXAMPLE
We demonstrate how function inlining can counterintuitively im-
pact runtime behavior using a sample benchmarking program, ran-
dom.cpp, as an example. We present its source code and compiled
WebAssembly code in Figure 4. We highlight the impact on two of
the sample’s functions when the function inlining is enabled and
disabled. Figure 4(a) shows the C++ source code implementation of
the functions gen_random and main. gen_random uses the constants
IM, IA, and IC to generate a pseudo-random number. The main
function calls gen_random in a long-running while loop perform-
ing 400 million iterations, making gen_random a hot function. Fig-
ure 4(b) shows the WebAssembly code of wasm-function[13] and
wasm-function[14] when function inlining is disabled. The export

Table 2: LLVM test suite SingleSource/Benchmarks.

Subdirectory #Samples #LOC Subdirectory #Samples #LOC

Adobe-C++ 6 696 Misc-C++ 7 1,341
BenchmarkGame 8 549 Misc-C++-EH 1 16,846
CoyoteBench 4 1,294 Polybench 32 5,188
Dhrystone 2 767 Shootout 14 663
Linpack 1 552 Shootout-C++ 25 972
McGill 4 956 SmallPT 1 102
Misc 27 3,487 Stanford 11 1,332

Total 143 34,745

section on line 180 shows that wasm-function[13] implements main.
Inspecting the loop code within wasm-function[13] shows that it
calls wasm-function[14] with the value 100.0 passed in as an ar-
gument, meaning that wasm-function[14] implements gen_random.
Figure 4(c) shows the WebAssembly code for the main function,
wasm-function[13], produced when inlining is enabled. Inspecting
Figure 4(b) and Figure 4(c) reveals that wasm-function[14] from
Figure 4(b) has been inlined into wasm-function[13].

When the Chromium browser runs this WebAssembly module,
machine code for each function is first generated using the Liftoff
compiler. Once this compiler finishes generating code for a function,
the function can begin executing. In the background, the optimizing
TurboFan compiler begins generating better-performing machine
code for that function. When TurboFan finishes generating the ma-
chine code, the browser switches out the Liftoff-generated code for
the TurboFan-generated code on the following function call. How-
ever, since main in a C program is only invoked once, the browser
does not switch to the TurboFan-generated code. Because the hot
function gen_random has been inlined into main, gen_random also
uses the slower Liftoff code, and the program runtime performance
is negatively impacted. This example shows how function inlining
can cause counterintuitive runtime behavior in WebAssembly.

4 METHODOLOGY
We aim to understand the counterintuitive effects of function inlin-
ing onWebAssembly program runtime. We define a counterintuitive
effect as producing a binary with a slower runtime performance
than if the optimization was disabled. Specifically, we focus on the
following research questions:
• RQ1 – Significance: How often does function inlining coun-
terintuitively impact WebAssembly modules, and are the effects
unique to WebAssembly?

• RQ2 – Function Characteristics: Which characteristics of the
inlined functions cause the counterintuitive behavior?

• RQ3 – Quantification: How does excluding certain functions
from inlining impact the counterintuitive effects?
To answer these questions, we use samples from the LLVM test

suite to perform five sets of experiments. Next, we discuss the C/C++
source programs and the experiments in detail.

4.1 C/C++ Source Programs.
To measure the runtime performance impacts of different optimiza-
tion configurations, we select 143 C/C++ samples totaling over
34,000 lines of code (LOC) from the LLVM test suite [8]. The test

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Romano and Wang

#define IM 139968
#define IA 3877
#define IC 29573

inline double gen_random(double max)
{

static long last = 42;
last = (last * IA + IC) % IM;
return(max * last / IM);

}

int main(int argc, char *argv[]) {
...
int N = 400000000;
double result = 0;
while (N--) {

result = gen_random(100.0);
}
...
return(0);

}

(func (;13;) (param i32 i32)
(result i32)
(local i32 i32 f64)
...
loop

i32.const 3877
i32.mul
i32.const 29573
i32.add
i32.const 139968
i32.rem_s
...
local.get 3
i32.const -1
i32.add
local.tee 3
br_if 0

end
...)

(export "main" (func (;13;)))

(func (;13;) (param i32 i32)
(result i32)
(local i32 f64)
...
loop

call 14
local.get 2
i32.const -1
i32.add
local.tee 2
br_if 0

end
...

(func (;14;) (param f64)
(result f64)
(local i32)
i32.const 3877
i32.mul
i32.const 29573
i32.add
i32.const 139968
i32.rem_s
...)

(export "main" (func (;13;)))

1
2
3

4
5
6
7
8
9

10

22
23
24
25
26

38
39

201
202
203

225
226
227
228
229
230
231

243
244
245
246
247
248

290

101
102
103

125
126
127
128
129
130
131
132

154
155
156
157
158
159
160
161
162

180

(a) C++ source code (c) Wat inlined(b) Wat not inlined

Figure 4: random.cpp C++ and WebAssembly code. (a) shows the C++ code of two functions, gen_random and main. (b) shows
the WebAssembly output compiled with function inlining disabled. Function 13 is the main function, and inspecting its loop
code reveals function 14 is gen_random. (c) shows function 13 from the module compiled in the Baseline experiment. The file
differences between (b) and (c) show that function 14, gen_random, has been inlined into function 13, main.

suite contains benchmarking samples measuring LLVM compi-
lation performance. We focus on the samples within the Single-
Source/Benchmarks directory, listed in Table 2, as these samples
are designed to trigger optimizations and can be compiled by Em-
scripten without code changes. We select this test suite for its
inclusion of samples used in prior works and it ease of compilation.
This test suite includes samples from the Polybench benchmark
suite [59], whichwas used by Jangda et al. to compareWebAssembly
and native runtime [37]. The remaining samples implement samples
of comparable computational complexity to those in the Polybench
suite, such as Fibonacci number computation [20], Cholesky fac-
torization [21], and Huffman compression [22]. In addition, the
samples within the SingleSource directory of the test suite are de-
signed so that only a single file is needed for compilation. The
compilation settings needed to compile each sample are also well
documented within the test suite repository. For these reasons,
we choose the LLVM test suite samples for our experiments. We
omit 16 samples that do not compile successfully with Emscripten,
leaving 127 samples for our experiments.

4.2 Experiments Inspecting Inlining Effects.
We start our investigation by establishing baseline runtime mea-
surements using the four optimization level options, i.e., O0, O1, O2,
and O3 [11], available to an end user of the compiler. For our study,
a binary is faster if its runtime is lower than that of another binary.

We describe the details of each optimization level below.

• O0: means no optimizations. The compiler compiles the
source code without any attempt to optimize the code.

• O1: applies basic optimizations, such as loop simplification
and redundant instruction combinations [9, 24].

• O2: adds more passes than O1 while balancing between run-
ning time improvement and code size reduction.

• O3: contains all optimizations in O2 and enables optimiza-
tions that increase code size to improve runtime.

To identify counterintuitive behavior caused by function inlin-
ing, we disable function inlining in each of the optimization levels
and measure the runtime in each sample using both Chromium and
Firefox.We focus on findingWebAssembly-specific issues surround-
ing inlining optimizations, so for every sample, we compile to the
native x64 architecture and measure the runtime using the same
optimization levels. Our analysis focuses on samples where the
runtime behavior is intuitive on the native architecture and coun-
terintuitive on WebAssembly. We then separately disable the LLVM
inline and Binaryen inlining-optimizing passes in each optimization
level to understand how each pass introduces the counterintuitive
behavior. To do so, we construct modified builds of the LLVM and
Binaryen that selectively disable passes. For the samples compiled
to the native x64 architecture, we only disable the inline pass in
LLVM as Binaryen is for WebAssembly only. We measure the sam-
ple runtimes when the inlining passes are enabled and disabled.
The runtime behavior is counterintuitive if disabling the inlining
pass results in a faster runtime than if the inlining pass is enabled.

To explore the causes of the counterintuitive behavior in the
WebAssembly samples, we use the Linux perf tools to inspect the
fine-grained runtime details of the execution. Specifically, we use
the perf record tool to record which WebAssembly functions are
executed and which browser compiler code they use. We also mea-
sure the overall percentage of execution time spent within these
WebAssembly functions. We investigate the execution of native x64
samples using the perf stat tool. This tool records key hardware and
software events, such as cache misses, branches taken, and CPU
cycles, which allow us to understand the counterintuitive behavior.

Table 3 presents the setups of our five experiments for inspecting
the effects of function inlining. Similar to other studies [15, 49, 50,
55, 58], we use the average runtime of 10 runs for our analyses in
all our experiments.

• Baseline:We measure the runtimes of the 127 benchmarking
samples compiled to WebAssembly with the optimization

When Function Inlining Meets WebAssembly: Counterintuitive Impacts on Runtime Performance ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 3: Experiments testing function inlining effects.

Experiment Platform Opt.
Levels

LLVM Inlining
Enabled

Binaryen Inlining
Enabled

Baseline Wasm O0–O3 ✓ ✓
1 Wasm O0–O3 ✗ ✗

2 x64 O0–O3 ✗ N/A
3 Wasm O0–O3 ✗ ✓
4 Wasm O2–O3 ✓ ✗

5 Wasm O2–O3 ✓ Patched

1
2
3
4
5
6
7
8
9
10
11
12

const origInstantiate = WebAssembly.instantiate;
WebAssembly.instantiate = (source, importObject) => {
let instance = origInstantiate(source, importObject);
for(const name in instance.exports){
const origFunction = instance.exports[name];
instance.exports[name] = function(){
const startTime = performance.now();
let result = origFunction.apply(this, arguments);
const endTime = performance.now();
logTime(name, startTime, endTime);
return result;

}}}

Figure 5: Instrumentation code to record runtime. The code
modifies exported functions of all WebAssembly modules to
log the time before and after the function call.

levels O0-O3 in their default modes, i.e., with both the LLVM
inline and Binaryen inlining-optimizing passes enabled.

• Experiment #1:We compare the runtimes of all WebAssembly
samples with O0-O3 having the LLVM inline and Binaryen
inlining-optimizing passes disabled.

• Experiment #2:We compile each sample to two versions of
an x64 executable: one version with the LLVM inline pass
enabled against another version with inline disabled.

• Experiment #3:To understandwhich inlining pass contributes
to the counterintuitive behavior more, our third experiment
compiles the 127WebAssembly samples with only the LLVM
inline pass disabled.

• Experiment #4: We compile the 127 samples with only the
Binaryen inlining-optimizing pass disabled.

• Experiment #5:We inspect the samples that experience coun-
terintuitive effects in Experiment #4. We patch the inlining-
optimizing pass to selectively disable inlining for hot func-
tions. The runtimes of samples using this patched pass are
compared against those using the original pass.

5 IMPLEMENTATION
We instrument the WebAssembly APIs to measure the module run-
time in the browser. Specifically, as shown in Figure 5, we instru-
ment the WebAssembly.instantiate and .instantiateStreaming
methods to log the duration of each exported function. This code
snippet modifies the WebAssembly API methods (line 1) to iterate
over all exported functions in the WebAssembly instance (line 4). A
new function overwrites each exported function to record the time
before (line 7) and after (line 9) calling the original function (line
8). The duration is logged for analysis after the page executes (line
10). We instrument the WebAssembly APIs using Puppeteer [12].

We build our performance measurement tool using Node.js
(v14.18.2) [57]. We use the Emscripten compiler (v2.0.29) built on

top of Clang (v14.0.0) to generate WebAssembly samples. In our
experiments, we use Chromium (v99.0.4806.0) and Firefox (version
109.0). We run our Chromium and native experiments on a desktop
containing an Intel Core i7 CPU@3.20GHz with 32 GB RAM. We
run our Firefox experiments on a laptop with an Intel Core i7
CPU@2.10GHz and 64GB RAM. Both devices run Ubuntu 20.04.

6 EVALUATION
In this section, we present findings and insights from our five sets
of experiments investigating the counterintuitive function inlining
effects in WebAssembly modules.
Summary of Results. We find that disabling inlining in both
LLVM and Binaryen causes counterintuitive behavior in 66 of the
127 (51.97%) samples run in Chromium and Firefox. Only 12 of these
samples experience similar behavior on the native x64 platform, so
we exclude these samples from our investigation1. We run two sets
of experiments where one disables only LLVM’s inline pass and the
other disables only Binaryen’s inlining-optimizing pass. LLVM’s
pass impacts 44 samples, while Binaryen’s pass causes counterin-
tuitive results in 56 samples. Further investigation of Binaryen’s
inlining-optimizing pass identifies hot functions as a probable cause
of the counterintuitive effect. To quantify their impact, we modify
the pass to prevent inlining for hot functions. 41 of the 56 samples
experience improved runtime with the patched pass, indicating that
hot functions inlined into long-running functions are a major cause
of the counterintuitive behavior and further work should focus on
improving inlining heuristics for hot functions.

6.1 RQ1: Significance of Counterintuitive
Effects

6.1.1 Function Inlining Effects on WebAssembly. To measure the
effects of function inlining, we compile 127 samples from the Sin-
gleSource/Benchmarks directory of the LLVM test suite with opti-
mization levels O0 - O3. Experiment #1 compiles each sample with
the function inlining passes in both LLVM (inline) and Binaryen
(inlining-optimizing) disabled. The resulting modules are run using
both Chromium and Firefox.

In Figure 6, we report the runtime speedup experienced by each
sample when run in Chromium with the two inlining passes dis-
abled. Note that the figure presents samples that contain at least one
optimization level grouping that experience a 5% percent speedup,
i.e., experience a 5% percent decrease in runtime, after disabling
inlining. For example, in the sample matrix.cpp, disabling inlining
leads to a runtime speedup of 62.42% in O1 and 36.03% in O2. When
compiled with inlining disabled, 32 samples become at least 5%
faster (and 15 samples become 20% faster) in Chromium. Figure 7
shows that 51 samples with inlining disabled run at least 5% faster
and 10 samples run at least 20% faster in Firefox. On average, these
counterintuitive samples experience a 15.07% speedup. The results
in Figures 6 and 7 show function inlining causes counterintuitive
behavior in certain WebAssembly modules.

6.1.2 Function Inlining Effects on x64 Architecture. We compare the
effects of function inlining in WebAssembly against the inlining
effects in native x64 binaries to determine whether these effects

1Such cases are not unique to WebAssembly, hence not our focus.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Romano and Wang

2m
m

.c

3m
m

.c
ad

i.c

ch
om

p.
c

dt
.c

du
rb

in.
c

fd
td

-2
d.

c

fib
o.

cp
p

flo
ps

.c

ge
m

m
.c

ge
m

ve
r.c

he
ap

so
rt.

c

he
ap

so
rt.

cp
p

he
llo

.cp
p

him
en

ob
m

txp
a.

c

jac
ob

i-1
d-

im
pe

r.c

lin
pa

ck
-p

c.c

lpb
en

ch
.c lu.

c

m
at

rix
.cp

p

m
isr

.c

ne
ste

dlo
op

.c

ns
iev

e-
bit

s.c

ob
jin

st.
c

pu
zz

le.
c

ra
nd

om
.cp

p

Rea
lM

M
.c

Ree
dS

olo
m

on
.c

re
g_

de
te

ct.
c

sie
ve

.c

ste
pa

no
v_

ab
str

-

ac
tio

n.
cp

p
sy

r2
k.c

0

20

40

60

80

R
el

at
iv

e
T

im
e

(%
)

O0 O1 O2 O3

Figure 6: Runtime speedup of samples in Experiment #1 with Chromium. The bars show the % speedup of the samples having
both LLVM and Binaryen inlining passes disabled compared to when both inlining passes enabled, i.e., the default version. The
runtime speedups range from as low as 5.34% to high as 50.61% with an average speedup of 25.2%

ack
erm

an
n.c

alm
ab

en
ch.

c

ary
.cp

p
ary

3.c
ata

x.c
bic

g.c

big
fib

.cp
p

Bub
ble

sor
t.c dt.

c

fdt
d-2

d.c

ffb
en

ch.
c

fftb
en

ch.
cpp fib

2.c
flo

ps.
c

fun
cti

on
ob

jec
ts.

cpp

ge
sum

mv.c
ha

sh.
c

ha
sh.

cpp

he
ap

sor
t.c

he
ap

sor
t.c

pp

he
llo.

cpp

hu
ffb

en
ch.

c

Int
MM.c

jac
ob

i-1
d-i

mpe
r.c

jac
ob

i-2
d-i

mpe
r.c

lpb
en

ch.
c

man
de

l-te
xt.

cpp

matm
ul_

f64
_4x

4.c

matr
ix.c

pp
misr.

c
mvt.

c

ne
ste

dlo
op

.c

nsi
ev

e-b
its.

c

ob
jins

t.c
pp

Osca
r.c

Per
m.c pi.

c

pu
zzl

e.c

Que
en

s.c

Quic
kso

rt.c

ran
do

m.cp
p
ray

.cp
p

Re
alM

M.c
sie

ve
.c

sph
ere

fla
ke.

cpp

str
cat

.c

str
cat

.cp
p
syr

2k
.c

Tow
ers

.c

Tre
eso

rt.c

trm
m.c

0

20

40

60

Re
la

tiv
e

Ti
m

e
(%

)

O0 O1 O2 O3

Figure 7: Runtime speedup of samples in Experiment #1 with Firefox. The runtime speedups range from as low as 5.02% in
functionobjects.cpp to high as 56.15% inmatrix.cpp with an average speedup of 15.07%

ar
y2

.cp
p

bic
g.

c

Bub
ble

so
rt.

c

fib
o.

cp
p

ha
sh

.c

hu
ffb

en
ch

.c

jac
ob

i-2
d-

im
pe

r.c lu.
c

m
at

m
ul_

f6
4_

4x
4.

c

m
at

rix
.c

Per
m

.c

pu
zz

le.
c

Que
en

s.c

Tre
es

or
t.c

tri
so

lv.
c

0

20

40

60

80

%
 S

pe
ed

up

O0 O1 O2 O3

Figure 8: Runtime speedup of samples in Experiment #2. The
bars show the % runtime speedup of the x64 samples after
having LLVM’s inline pass disabled.

are unique to WebAssembly or common across multiple platforms.
Experiment #2 compiles the samples to x64 binaries with inline
in LLVM disabled. Figure 8 shows the samples experiencing the
counterintuitive inlining behavior. Of the 127 samples, 15 samples
experience similar counterintuitive effects with function inlining
as those in WebAssembly. Of those 15 samples, 12 samples, high-
lighted in yellow, experience counterintuitive inlining effects on
bothWebAssembly and the native x64 platform. We inspect the exe-
cution details of the native binaries using the perf stat tool. We find
that higher values in the cache-misses, all-loads-retired, and
all-stores-retired events explain the counterintuitive behavior
experienced by these samples. These execution statistics indicate
that inlining leads to an increased number of cache misses (from
the cache-misses events) and increased register pressure (from

the all-loads-retired and all-stores-retired events) [37] dur-
ing execution. These are known issues of function inlining in na-
tive architectures [5]. Among the samples experiencing increased
counts in these metrics, inlining increases cache-misses by 12.95%,
all-loads-retired by 11%, and all-stores-retired by 9%. The
small number of common samples in bothWebAssembly and native
x64 suggests that the counterintuitive effects seen in theWebAssem-
bly samples are caused by different factors than in the native x64
platform. We continue our investigation of the counterintuitive
WebAssembly samples to determine what these factors are.

6.2 RQ2: Investigation of Function
Characteristics Causing Counterintuitive
Effects

The results in Section 6.1 show that the function inlining passes in
Binaryen and LLVM can lead to counterintuitive behavior that is
unique to WebAssembly. In this section, we investigate the causes
of this behavior. Specifically, we seek to understand the characteris-
tics of the inlined functions that lead to the counterintuitive effects
we observe. We first manually inspect the compiled WebAssembly
modules to understand how the code differences produce the behav-
ior. However, the number of differences between the samples with
both inlining passes enabled and disabled is large. Each sample con-
tains an average difference of 24,774.73 LOC between the versions
having inlining enabled and disabled. Combined with the terse syn-
tax of WebAssembly, manual inspection of these samples proves
to be extremely challenging. Hence, to ease the inspection process,
we inspect the effects of a single inlining pass on the module, re-
ducing the search space of code differences between the samples

When Function Inlining Meets WebAssembly: Counterintuitive Impacts on Runtime Performance ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

with enabled and disabled inlining. We also compile the samples
with the LLVM and Binaryen inlining passes disabled separately
to understand how each component introduces counterintuitive
behavior and discuss the results of each component separately.

2m
m

.c

3m
m

.c

ac
ke

rm
an

n.
c

ch
om

p.
c

dt
.c

ev
all

oo
p.

c

flo
ps

.c

ge
m

m
.c

ge
m

ve
r.c

he
llo

.c

him
en

ob
m

txp
a.

c

jac
ob

i-1
d-

im
pe

r.c

lin
pa

ck
-p

c.c

lpb
en

ch
.c

m
at

rix
.cp

p

ne
ste

dlo
op

.c

ra
nd

om
.cp

p

re
g_

de
te

ct.
c

ste
pa

no
v_

ab
str

ac
tio

n.
cp

p
sy

r2
k.c

0

10

20

30

40

50

60

%
 S

pe
ed

up

O0 O1 O2 O3

Figure 9: Runtime speedup comparing Experiment #3 with
Baseline in Chromium. The bars show the % speedup in the
samples’ runtimes with the LLVM inline pass disabled com-
pared to their runtime with the inline pass enabled.

6.2.1 Function Inlining in LLVM. Experiment #3 aims to show the
impact of the LLVM inline pass on the counterintuitive effects. The
results, shown in Figure 9, reveal that the disabling the inline pass
leads to a Chromium runtime speedup of at least 5% in 20 different
samples with the average runtime speedup being 17.61%. Of those
20 samples, 7 samples experience a runtime speedup of at least 20%.
In Firefox, 32 and 7 samples experience runtime speedups of at least
5% and 20%, respectively. The runtime speedups in Firefox range
from as low as 5.03% to high as 56.80% with an average speedup of
13.01%. Due to space constraints, we omit the Firefox results figure.
Case Study (random.cpp). To exemplify the characteristics of the
inlined functions, we investigate one of these affected samples, ran-
dom.cpp, in depth. Recall that in its source and WebAssembly code
presented in Figure 4, we saw that the code for the hot C++ func-
tion gen_random (wasm-function[14] in WebAssembly) is inlined
into the C++ main function (wasm-function[13]). In this example,
inlining is performed by LLVM’s inline pass Figure 10 shows the
collected browser call trace from perf record for random.cpp when
the inline pass is enabled and disabled. Figure 10(a) shows that
when inline is enabled, wasm-function[13] consumes the largest
WebAssembly runtime, i.e., it is the hottest function, and uses the
Liftoff-generated code. In Figure 10(b), wasm-function[14] sup-
plants wasm-function[13] as the function with the largest share
of the overhead. Wasm-function[14] uses the TurboFan-generated
codewhile wasm-function[13] is still running the Liftoff code. Com-
bining the code snippet in Figure 4(c) with the call trace in Fig-
ure 10(a) shows that when inlining is enabled, the browser is stuck
using the Liftoff-generated code of gen_random. Figure 4(b) and Fig-
ure 10b show that disabling inlining allows the gen_random function
to use the TurboFan code because it is not bound to the main func-
tion. To sum up, separating the hot gen_random function from the
long-running main function allows the hot functionality to use the
more-efficient TurboFan code.

The random.cpp case shows that the inline pass affects whether
the hottest function in the module uses the code generated by the
Liftoff or TurboFan compiler. We collect the perf record output of
each sample in Figure 9 with inlining enabled and disabled. We find

67.25% [.] Function:wasm-function[13]-13-liftoff
0.00% [.] Function:wasm-function[1476]-1476-turbofan
0.00% [.] Function:wasm-function[1477]-1477-turbofan
0.00% [.] Function:wasm-function[285]-285-turbofan
0.00% [.] Function:wasm-function[327]-327-turbofan

Random.cpp O1 Inlining Enabled

(a) Inline Enabled

42.08% [.] Function:wasm-function[14]-14-turbofan
11.06% [.] Function:wasm-function[13]-13-liftoff
0.00% [.] Function:wasm-function[12]-12-liftoff
0.00% [.] Function:wasm-function[1507]-1507-turbofan
0.00% [.] Function:wasm-function[1510]-1510-liftoff
0.00% [.] Function:wasm-function[1524]-1524-liftoff

Random.cpp O1 Inlining Disabled

(b) Inline Disabled

Figure 10: Perf record output for random.cpp. (a) traces the
browser function calls made during the Baseline experiment.
Here, function 13 uses Liftoff code and occupies most of the
execution time. (b) traces the browser calls in Experiment #3,
and it shows that function 14 uses its TurboFan code.

that in 12 out of 20 Chromium samples, the hottest function of the
module uses Liftoff when inlining is enabled and TurboFan when
inlining is disabled. This finding suggests that function inlining can
prevent the more performant TurboFan code from being used.

6.2.2 Function Inlining in Binaryen. Experiment #4 aims to high-
light the contribution that inlining-optimizing pass in Binaryen
has on the counterintuitive behavior. Figure 11 shows that the
inlining-optimizing pass in Binaryen causes 29 samples to experi-
ence counterintuitive runtime behavior in Chromium. Among these
29 samples, the smallest runtime speedup was 5.60% in reg_detect.c,
the largest speedup was 50.0% in ReedSolomon.c, and the average
speedup was 20.88%. It is important to note that since Experiment
#4 inspects all 127 samples, these 29 samples are not a subset of
the samples in Experiment #1. In Firefox, Figure 12 shows that 40
samples experience counterintuitive runtime speedup of at least
5%, with the smallest runtime speedup being 5.13% (dry.c) and the
largest speedup being 42.39% (lists.cpp).

Our analysis of the affected samples with perf record shows
that they experience similar behavior as random.cpp exhibits with
LLVM’s inline pass (shown in Figure 10). In 23 of the 29 Chromium
samples, the hottest function in the sample version with inlining-
optimizing enabled uses the Liftoff-generated code, while the hottest
function in the sample version with inlining-optimizing disabled
uses the TurboFan-generated code. This finding shows that, for
both components, the same reason explains the effects of function
inlining: function inlining can prevent the hot functions in a module
from using the more performant browser compiler.

Figure 13 shows the breakdown of executed functions within the
Chromium-run O2 samples in Figure 6 that have a speedup of at
least 20%. For each sample, the figure shows two bars: the left bar
is breakdown of the function executed when both inlining passes
are enabled (Baseline), while the right bar shows the breakdown
when inlining is disabled (Experiment #1). Each segment represents
a single function, and its height indicates its percentage of the total
execution time (according to perf record). As Figure 13 shows, the
samples experience similar counterintuitive behavior to Figure 10:
the samples are limited to using Liftoff for the hot functions when

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Romano and Wang
2m

m
.c

ad
i.c

al
m

ab
en

ch
.c

ar
y.

cp
p

ar
y3

.c
pp

bi
gf

ib
.c

pp

ch
om

p.
c

fft
be

nc
h.

cp
p

ge
m

m
.c

ge
m

ve
r.c

he
ap

so
rt.

c
he

ap
so

rt.
cp

p
hi

m
en

ob
m

tx
pa

.c
lo

op
_u

nr
ol

l.c
pp

lp
be

nc
h.

c

m
is

r.c
m

om
en

ts
.c

pp
ne

st
ed

lo
op

.c
ns

ie
ve

-b
its

.c
ra

nd
om

.c
pp

R
ea

lM
M

.c
R

ee
dS

ol
om

on
.c

re
g_

de
te

ct
.c

si
ev

e.
cp

p
si

m
pl

e_
ty

pe
s_

co
ns

ta
nt

_f
ol

di
ng

.c
pp

si
m

pl
e_

ty
pe

s_

lo
op

_i
nv

ar
ia

nt
.c

pp
sp

he
re

fla
ke

.c
pp

st
ep

an
ov

_

ab
st

ra
ct

io
n.

cp
p

sy
r2

k.
c

0

10

20

30

40

50

%
 S

pe
ed

up

O2 O3

Figure 11: Runtime speedup comparing Experiment #4 with Baseline in Chromium. The bars present the runtime speedup in
samples after the Binaryen inlining-optimizing pass is disabled.

2m
m.c

3m
m.c

ary
3.c

pp
ata

x.c
big

fib
.cp

p
ch

ole
sk

y.c
ch

om
p.c

co
rre

lat
ion

.c
co

va
ria

nc
e.c dr
y.c

dy
np

rog
.c

fdt
d-2

d.c
fft

be
nc

h.c
pp

fld
ry.

c
flo

ps
-2.

c
flo

ps
-4.

c
ha

sh
2.c

pp
him

en
ob

mtxp
a.c

lis
ts.

cp
p

lis
ts1

.cp
p

man
de

l-2
.c

meth
ca

ll.c
pp

misr
.c

mom
en

ts.
cp

p
ob

jin
st.

cp
p

Os
ca

r.c
ray

.cp
p

ric
ha

rds
_b

en
ch

mark
.c

sie
ve

.c
sie

ve
.cp

p

sim
ple

_ty
pe

s_

co
ns

tan
t_f

old
ing

.cp
p

sim
ple

_ty
pe

s_

loo
p_

inv
ari

an
t.c

pp
sp

he
ref

lak
e.c

pp

ste
pa

no
v_

v1
p2

.cp
p

ste
pa

no
v_

ve
cto

r.c
pp

str
ca

t.c
sy

mm.c
sy

r2
k.c

To
we

rs.
c

trm
m.c

0
10
20
30
40
50

%
 S

pe
ed

up

O2 O3

Figure 12: Runtime speedup comparing Experiment #4 with Baseline in Firefox.

3m
m

.c

he
ap

so
rt.

c

he
ap

so
rt.

cp
p

him
en

ob
m

txp
a.

c

lpb
en

ch
.c

m
at

rix
.cp

p

ns
iev

e-
bit

s.c

ra
nd

om
.cp

p

Ree
dS

olo
m

on
.c

0

20

40

60

80

100

P
er

ce
nt

 o
f E

xe
cu

tio
n

T
im

e
(%

)

Inlining Liftoff Inlining TurboFan No-Inlining Liftoff No-Inlining TurboFan

Figure 13: Breakdown of Liftoff or TurboFan compilers used
in O2. Each bar segment represents a function and its portion
of total execution time. The left bar shows the Baseline exe-
cution, while the right bar shows Experiment #2 execution.

inlined into a long-running function, while disabling inlining allows
the hot functions to use the TurboFan code.
Examples (chomp.c and Simple_types_constant_folding.cpp).

Figure 14 shows the result of perf record when run on the sam-
ple chomp.c, with Figure 14a showing the output when inlining-
optimizing is enabled and Figure 14b showing the output when
inlining-optimizing is disabled. In both snippets, wasm-function[7]
is the WebAssembly function with the largest portion of the execu-
tion time. However, Figure 14a shows that this function is executed
with the Liftoff-generated machine code, while Figure 14b shows
that the function uses the TurboFan-generated code.

8.98% [.] Function:wasm-function[7]-7-liftoff
0.14% [.] Function:wasm-function[5]-5-turbofan
0.00% [.] Function:wasm-function[10]-10-turbofan
0.00% [.] Function:wasm-function[21]-21-turbofan
0.00% [.] Function:wasm-function[22]-22-turbofan
0.00% [.] Function:wasm-function[23]-23-turbofan
0.00% [.] Function:wasm-function[27]-27-turbofan
0.00% [.] Function:wasm-function[6]-6-turbofan
0.00% [.] Function:wasm-to-js:iiii:i-0-turbofan

9.23% [.] Function:wasm-function[7]-7-turbofan
0.15% [.] Function:wasm-function[8]-8-turbofan
0.15% [.] Function:wasm-function[20]-20-turbofan
0.00% [.] Function:wasm-function[10]-10-turbofan
0.00% [.] Function:wasm-function[13]-13-turbofan
0.00% [.] Function:wasm-function[29]-29-turbofan
0.00% [.] Function:wasm-function[31]-31-turbofan
0.00% [.] Function:wasm-function[32]-32-turbofan
0.00% [.] Function:wasm-function[33]-33-turbofan
0.00% [.] Function:wasm-function[40]-40-turbofan
0.00% [.] Function:wasm-function[41]-41-turbofan
0.00% [.] Function:wasm-function[9]-9-turbofan

Chomp.c_O2_noinliningoptimizing.pngChomp.c_O2_OG.png text

(a) Inlining-Optimizing Enabled

8.98% [.] Function:wasm-function[7]-7-liftoff
0.14% [.] Function:wasm-function[5]-5-turbofan
0.00% [.] Function:wasm-function[10]-10-turbofan
0.00% [.] Function:wasm-function[21]-21-turbofan
0.00% [.] Function:wasm-function[22]-22-turbofan
0.00% [.] Function:wasm-function[23]-23-turbofan
0.00% [.] Function:wasm-function[27]-27-turbofan
0.00% [.] Function:wasm-function[6]-6-turbofan
0.00% [.] Function:wasm-to-js:iiii:i-0-turbofan

9.23% [.] Function:wasm-function[7]-7-turbofan
0.15% [.] Function:wasm-function[8]-8-turbofan
0.15% [.] Function:wasm-function[20]-20-turbofan
0.00% [.] Function:wasm-function[10]-10-turbofan
0.00% [.] Function:wasm-function[13]-13-turbofan
0.00% [.] Function:wasm-function[29]-29-turbofan
0.00% [.] Function:wasm-function[31]-31-turbofan
0.00% [.] Function:wasm-function[32]-32-turbofan
0.00% [.] Function:wasm-function[33]-33-turbofan
0.00% [.] Function:wasm-function[40]-40-turbofan
0.00% [.] Function:wasm-function[41]-41-turbofan
0.00% [.] Function:wasm-function[9]-9-turbofan

Chomp.c_O2_noinliningoptimizing.pngChomp.c_O2_OG.png text

(b) Inlining-Optimizing Disabled

Figure 14: Perf record output for Chomp.c using O2

Similarly, Figure 15 shows that the hottest function in Figure 15a,
wasm-function[7], using the Liftoff-generated codewhile the hottest
function in Figure 15b, wasm-function[120], manages to use the
TurboFan code. Liftoff generates less-optimized, less-performant
code than TurboFan, so this difference caused by the inlining-
optimizing pass means that the hottest function will be limited

When Function Inlining Meets WebAssembly: Counterintuitive Impacts on Runtime Performance ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Simple_types_constant_folding.cpp_O2_OG.png text Simple_types_constant_folding.cpp_O2_noinliningoptimizing.png

8.23% [.] Function:wasm-function[7]-7-liftoff
2.74% [.] Function:wasm-function[10]-10-turbofan
0.75% [.] Function:wasm-function[34]-34-turbofan
0.60% [.] Function:wasm-function[35]-35-turbofan
0.11% [.] Function:wasm-function[20]-20-turbofan
0.08% [.] Function:wasm-function[22]-22-turbofan
0.08% [.] Function:wasm-function[25]-25-turbofan
0.08% [.] Function:wasm-function[31]-31-turbofan

1.05% [.] Function:wasm-function[120]-120-turbofan
0.89% [.] Function:wasm-function[135]-135-turbofan
0.46% [.] Function:wasm-function[121]-121-turbofan
0.45% [.] Function:wasm-function[122]-122-turbofan
0.45% [.] Function:wasm-function[137]-137-turbofan
0.44% [.] Function:wasm-function[138]-138-turbofan
0.44% [.] Function:wasm-function[136]-136-turbofan
0.33% [.] Function:wasm-function[123]-123-turbofan
0.14% [.] Function:wasm-function[112]-112-turbofan
0.11% [.] Function:wasm-function[147]-147-turbofan
0.11% [.] Function:wasm-function[128]-128-turbofan
0.11% [.] Function:wasm-function[143]-143-turbofan
0.11% [.] Function:wasm-function[131]-131-turbofan
0.11% [.] Function:wasm-function[146]-146-turbofan
0.11% [.] Function:wasm-function[126]-126-turbofan
0.11% [.] Function:wasm-function[133]-133-turbofan
0.11% [.] Function:wasm-function[140]-140-turbofan
0.00% [.] Function:wasm-function[7]-7-liftoff

(a) Inlining-Optimizing Enabled
Simple_types_constant_folding.cpp_O2_OG.png text Simple_types_constant_folding.cpp_O2_noinliningoptimizing.png

8.23% [.] Function:wasm-function[7]-7-liftoff
2.74% [.] Function:wasm-function[10]-10-turbofan
0.75% [.] Function:wasm-function[34]-34-turbofan
0.60% [.] Function:wasm-function[35]-35-turbofan
0.11% [.] Function:wasm-function[20]-20-turbofan
0.08% [.] Function:wasm-function[22]-22-turbofan
0.08% [.] Function:wasm-function[25]-25-turbofan
0.08% [.] Function:wasm-function[31]-31-turbofan

1.05% [.] Function:wasm-function[120]-120-turbofan
0.89% [.] Function:wasm-function[135]-135-turbofan
0.46% [.] Function:wasm-function[121]-121-turbofan
0.45% [.] Function:wasm-function[122]-122-turbofan
0.45% [.] Function:wasm-function[137]-137-turbofan
0.44% [.] Function:wasm-function[138]-138-turbofan
0.44% [.] Function:wasm-function[136]-136-turbofan
0.33% [.] Function:wasm-function[123]-123-turbofan
0.14% [.] Function:wasm-function[112]-112-turbofan
0.11% [.] Function:wasm-function[147]-147-turbofan
0.11% [.] Function:wasm-function[128]-128-turbofan
0.11% [.] Function:wasm-function[143]-143-turbofan
0.11% [.] Function:wasm-function[131]-131-turbofan
0.11% [.] Function:wasm-function[146]-146-turbofan
0.11% [.] Function:wasm-function[126]-126-turbofan
0.11% [.] Function:wasm-function[133]-133-turbofan
0.11% [.] Function:wasm-function[140]-140-turbofan
0.00% [.] Function:wasm-function[7]-7-liftoff

(b) Inlining-Optimizing Disabled

Figure 15: Perf record output for Sim-
ple_types_constant_folding.cpp using O2

in performance. We can also see at the bottom of the list in Fig-
ure 15b that wasm-function[7] still uses the Liftoff-generated code.
However, since this function no longer contains the hot code, the
detrimental runtime impact is mitigated. In both samples, we can
see that they experience the same runtime issues, the inability to
switch their hottest function over to the TurboFan-generated code,
that are seen in Figure 10 with LLVM’s inline pass. This behavior
shows that the same underlying issue, the hottest code being run
with the slower Liftoff-generated code, affects both inlining passes
across the different infrastructures.

The timing of the switch between Liftoff and TurboFan is de-
termined by each compiler’s duration for a given function. The
architecture of the single-pass Liftoff compiler [25] along with the
graph construction used in the TurboFan compiler [53] suggest
that function code size should influence the compiler duration. We
plot the compilation duration of the TurboFan and Liftoff compilers
against the function code size of all functions from the counterin-
tuitive samples in Figure 16. Our results reveal that the duration of
both compilers closely follow the increase in code size. However,
the TurboFan duration is consistently an order of magnitude larger
than the Liftoff duration for the same function size.

Following this trend, an explanation on why Binaryen’s inlining-
optimizing pass and LLVM’s inline pass lead to counterintuitive
behavior is that inlining instructions to a call site increases the
function code size. By increasing the code size of the long-running
function, it quickly increases the compilation time of TurboFan and
forces any inlined hot functionality to spend more time using the
Liftoff code. In the case of a long-running function invoked only
once, the increase in compilation duration decreases the likelihood
that the TurboFan code will be ready by the time of the first, and

Figure 16: Chromium compilation duration among all sam-
ples. For each function, the TurboFan (blue dots) and Liftoff
(green dots) compiler duration is plotted against the code
size. Darker dots indicate multiple functions of the same size
also have the same duration.

only, invocation. Also, inlining hot functions into a function that is
only invoked once, such as main, can prevent the inlined code from
ever using the more-efficient TurboFan code.

6.3 RQ3: Impact of Hot Functions on
Counterintuitive Effects

In this section, we empirically quantify the impact of inlining hot
functions in our dataset to better understand potential performance
gain if the hot function inlining is disabled. Specifically, we mod-
ify Binaryen’s inlining-optimizing in the compiler to exclude hot
functions (i.e., functions called in loops) from being inlined. Then,
we repeat the experiments with the modified pass to measure the
performance improvement by the modification.
Identifying Hot and Long-running Functions. To identify pos-
sible hot functions, we search for functions called within a loop
as they will be called repeatedly. Specifically, we use the LLVM
parser tools [4, 27] to obtain the abstract syntax tree (AST) of the
source code. We then traverse the AST to identify a sub tree with
a root node of For_Stmt containing a Call_Expr_Stmt node. Such
a sub-tree represents a function call statement within a loop and
the Call_Expr_Stmt’s call target is a hot function. While it is not a
comprehensive method, we find that this criterion is suitable for
identifying the hot functions within our samples. Note that we
manually verified that all the identified functions are hot functions.
The list of functions matching this criterion is used to prevent them
from being inlined. We also exclude typical long-running functions
that only execute once, such as the entry point (e.g., main) function.
Patched inlining-optimizing Pass. In Section 6.2, we discuss
how Binaryen’s inlining-optimizing pass can prevent hot functions
from tiering up to the more-efficient TurboFan code. Hence, in this
experiment, we modify the inlining-optimizing pass to disable the
inlining optimization for identified hot and long-running functions.
Results. We use this patched inlining-optimizing pass on the sam-
ples that experience the counterintuitive behavior in Figures 11
and 12. We list the change in original runtime versus the runtime
with themodified Binaryen pass in Figures 17 and 18.We also list the
original runtime versus the runtime results with inlining-optimizing
disabled to understand the impact of inlining optimizations except

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Romano and Wang
2m

m
.c

ad
i.c

al
m

ab
en

ch
.c

ar
y.

cp
p

ar
y3

.c
pp

bi
gf

ib
.c

pp

ch
om

p.
c

fft
be

nc
h.

cp
p

ge
m

m
.c

ge
m

ve
r.c

he
ap

so
rt.

c
he

ap
so

rt.
cp

p
hi

m
en

ob
m

tx
pa

.c
lo

op
_u

nr
ol

l.c
pp

lp
be

nc
h.

c

m
is

r.c
m

om
en

ts
.c

pp
ne

st
ed

lo
op

.c
ns

ie
ve

-b
its

.c
ra

nd
om

.c
pp

R
ea

lM
M

.c
R

ee
dS

ol
om

on
.c

re
g_

de
te

ct
.c

si
ev

e.
cp

p

si
m

pl
e_

ty
pe

s_
co

ns
ta

nt
_f

ol
di

ng
.c

pp

si
m

pl
e_

ty
pe

s_
lo

op
_i

nv
ar

ia
nt

.c
pp

sp
he

re
fla

ke
.c

pp

st
ep

an
ov

_a
bs

tra
ct

io
n.

cp
p

sy
r2

k.
c

0
10
20
30
40
50

%
 S

pe
ed

up

O2 No-Inlining O2 Patched O3 No-Inlining O3 Patched

Figure 17: Runtime speedup of Experiments #4 & #5 against Baseline in Chromium. The dark blue and green bars represent the
% speedup of the sample when compiled with our patched Binaryen pass for O2 and O3, respectively. The light blue and green
bars show the % speedup from Experiment #4 to serve as a reference point on the patched runtime impact. In 24 samples, our
patch produces a speedup to a similar extent that disabling all inlining does.

2m
m.c

3m
m.c

ary
3.c

pp
ata

x.c
big

fib
.cp

p
ch

ole
sk

y.c
ch

om
p.c

co
rre

lat
ion

.c
co

va
ria

nc
e.c dr
y.c

dy
np

rog
.c

fdt
d-2

d.c
fft

be
nc

h.c
pp

fld
ry.

c
flo

ps
-2.

c
flo

ps
-4.

c
ha

sh
2.c

pp
him

en
ob

mtxp
a.c

lis
ts.

cp
p

lis
ts1

.cp
p

man
de

l-2
.c

meth
ca

ll.c
pp

misr
.c

mom
en

ts.
cp

p
ob

jin
st.

cp
p

Os
ca

r.c
ray

.cp
p

ric
ha

rds
_b

en
ch

mark
.c

sie
ve

.c
sie

ve
.cp

p
sim

ple
_ty

pe
s

_c
on

sta
nt_

fol
din

g.c
pp

sim
ple

_ty
pe

s

_lo
op

_in
va

ria
nt.

cp
p

sp
he

ref
lak

e.c
pp

ste
pa

no
v_

v1
p2

.cp
p

ste
pa

no
v_

ve
cto

r.c
pp

str
ca

t.c
sy

mm.c
sy

r2
k.c

To
we

rs.
c

trm
m.c

0
10
20
30
40
50

%
 S

pe
ed

up

O2 No-Inlining O2 Patched O3 No-Inlining O3 Patched

Figure 18: Runtime speedup of Experiments #4 & #5 against Baseline in Firefox.

ae
ad

_ch
ach

a2
0p

oly
13

05

ae
ad

_ch
ach

a2
0p

oly
13

05
2

ae
ad

_xc
ha

cha
20

po
ly1

30
5

au
th

au
th2

au
th6 bo

x

bo
x_e

asy

bo
x_e

asy
2

bo
x_s

ea
l

bo
x_s

ee
d

bo
x2

bo
x8

cha
cha

20

cor
e_e

d2
55

19
cor

e2
cor

e4
cor

e5
cor

e6

ed
25

51
9_c

on
ve

rt

ge
ne

ric
ha

sh2

ge
ne

ric
ha

sh3 kd
f kx

misu
se

on
eti

mea
uth

on
eti

mea
uth

2

pw
ha

sh_
scr

yp
t_ll

sca
lar

mult

sca
lar

mult
_ed

25
51

9

sca
lar

mult
_ris

tre
tto

25
5

sca
lar

mult
2

sca
lar

mult
5

sca
lar

mult
6

sca
lar

mult
8

sec
ret

bo
x

sec
ret

bo
x_e

asy

sec
ret

str
ea

m sig
n

sip
ha

shx
24

sod
ium

_ut
ils

str
ea

m

str
ea

m3

xch
ach

a2
0

0

20

40

60

80

%
 S

pe
ed

up

O0 O1 O2 O3

Figure 19: Libsodium.js runtime speedup of Experiment #1 in Chromium.

for the hot functions. We find that, in 41 of the 56 samples from both
browsers, excluding the hot functions from the inlining leads to
improved runtime performance. Figure 17 shows that the runtime
speedups of the 24 improved samples in the 29 Chromium samples
range from as low as 5.24% in stepanov_abstraction.cpp to as high
as 53.49% in ReedSolomon.c, with an average speedup of 22.58%.
Figure 18 shows that the runtime speedups of the 24 improved
samples among the 40 Firefox samples range from as low as 5.85%
in flops-2.c to as high as 45.39% in lists.cpp, with an average speedup
of 16.16%. It is important to note that our simple heuristic for de-
termining hot functions is not comprehensive. Nevertheless, we
show that inlining heuristics following this direction can improve
runtime performance. We hope our findings motivate the need for
re-examined inlining heuristics for WebAssembly compilation.

6.4 Case Study on a Real-World Application
We now investigate the effects of function inlining in one popu-
lar real-world WebAssembly application, Libsodium.js [31]. This
project ports the Sodium cryptographic library [31] to the web
using WebAssembly and JavaScript, and it has over 396,000 weekly
downloads on the NPM package registry [19]. This library provides
APIs that implement cryptographic functions, e.g., encryption, mes-
sage signing, and hashing. In addition, we choose this project for
our case study as the project includes links to its C/C++ source
code and the compilation scripts. It contains 75 example programs
that test the cryptographic APIs provided by the library, and we
replicate Experiment #1 on these 75 programs. Figure 19 shows that
function inlining from the LLVM and Binaryen passes causes coun-
terintuitive behavior in 44 programs on Chromium. The smallest
runtime speedup was 5.07% in generichash2, the largest speedup

When Function Inlining Meets WebAssembly: Counterintuitive Impacts on Runtime Performance ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

was 86.46% in chacha20, and the average speedup was 16.76%. In
Firefox, we find that 58 programs show similar behavior, and the
average speedup is 20.36%. These results show that this inlining
issue extends to real-world applications.

7 DISCUSSION
7.1 Limitations
Our investigation of WebAssembly performance suffers from two
main limitations. First, the precision of our custom-built JavaScript
measurement tool limits the depth of our investigation.Most browsers
limit JavaScript timers to millisecond resolution [52], which is too
coarse to measure a typical WebAssembly call. As a result, we focus
on samples that have long running functions with runtimes in the
magnitude of seconds. We also focus on samples with a percent
decrease greater than 5% to account for the lack of precision.

Our second limitation is that we only inspect two browsers,
Chromium and Firefox. Inspecting each browser adds additional
manual work, and we are limited by our budget of manual effort
available. We accept this limitation as Chromium-based browsers
and Firefox account for 74% of the browser market share [1].

7.2 Threats to Validity
7.2.1 Internal Validity. Our study results are subject to possible
errors in the manual inspection processes. We manually inspect the
emitted code to ensure that function inlining is present or omitted
as per the tested configuration. We use the average of 10 runs to
ensure changes are not caused by small runtime variations. Multi-
ple factors, such as hardware, operating system, and system load,
make it difficult to reproduce the exact runtime values we record.
However, we describe the steps used to establish our Baseline ex-
periment. The counterintuitive behavior, relative to the baseline,
should remain consistent across different experimental setups.

7.2.2 External Validity. We use benchmarking samples from the
LLVM test suite. As Emscripten is an LLVM-based compiler, we find
that this collection of benchmarks curated by the LLVM develop-
ment team is well-suited to assess the compilation effects caused by
the inlining passes. The compiler benchmark samples also perform
intensive computations, an intended use case of WebAssembly.

7.2.3 Construct Validity. We identify the runtime impacts of func-
tion inlining optimizations by measuring the program runtime
through browser execution timing, native execution timing, and
event profiling tools. These measurement methods should highlight
changes caused by different optimizations used in the samples.

7.3 Future Work
Our current work only investigates the counterintuitive behavior
of two inlining optimization passes. Our measurements show cases
where these two passes alone cannot explain the counterintuitive
behavior, indicating that other optimization passes also cause the
behavior. We plan to study the other LLVM and Binaryen passes
for similar counterintuitive behavior.

Our current analysis only focuses on a single metric for coun-
terintuitive behavior: runtime performance. We plan to investigate
possible counterintuitive changes in other metrics, such as code
size, memory usage, and energy consumption.

8 RELATEDWORK
Compiler Optimizations. Existing work studies the impacts of
different optimizations on specific processor architectures [28] and
high-level synthesis [30]. Some work proposes optimization frame-
works improving SIMD performance [36]. Other works leverage
machine learning techniques on optimization selection [41, 48].
Theodoridis et al. describe LLVM inlining heuristics improvements
in native applications [68]. To our knowledge, our work is the first
to study inlining performance in WebAssembly compilers.
Compiler Studies. Previous studies investigate the prevalence of
compiler bugs [62, 67] and survey compiler testing approaches [29].
Other studies develop compiler testing techniques, such as equiva-
lencemodulo inputs [42, 43] and skeletal program enumeration [74].
WebAssembly Performance Measurements. Yan et al. [72] find
evidence of optimizations causing counterintuitive effects. Jangda
et al. [37] compare the performance of C programs compiled to
WebAssembly and native code. In contrast, our work focuses on
effects of function inlining on WebAssembly applications.
WebAssembly Program Analysis and Security. Several works
analyze WebAssembly execution and security. Hilbig et al. [35] re-
port the use cases and statistics of real-worldWebAssembly binaries.
Several tools dynamically analyze WebAssembly execution [45, 64],
identify module purposes [63], and recover high-level type informa-
tion from the binaries [46]. Prior work proposes specification and
compiler extensions to improve security [32, 39, 56, 70, 71]. Other
works identify vulnerabilities inWebAssembly applications [44, 47],
propose attack strategies using WebAssembly [61], and detect ma-
licious WebAssembly modules [65].

9 CONCLUSION
Function inlining optimizations in WebAssembly compilers fail to
consider the presence of multiple browser compilers, leading to
runtime performance issues. We provide the first in-depth inves-
tigation on the counterintuitive impact that function inlining can
have on WebAssembly modules. Inlining can prevent hot function-
ality in the modules from leveraging optimized machine code if
the functions are inlined into long-running or seldomly invoked
functions, leading to noticeable performance degradation of the
whole application. We find that this behavior effects 66 out of 127
samples in the LLVM test suite and is caused by the inlining passes
in both the LLVM and Binaryen components of Emscripten. We
hope our work highlights the need to revisit existing optimization
techniques for optimal WebAssembly usage.

10 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.
This work was partially supported by the US National Science
Foundation under Grant No. 2047980. Any opinions, findings, and
conclusions in this paper are those of the authors only and do not
necessarily reflect the views of our sponsors.

11 DATA AVAILABILITY
We make our experiment results and data collection scripts avail-
able on Zenodo at https://doi.org/10.5281/zenodo.8327204 [23]. This
artifact contains the measured runtime results for all of our experi-
ments and the scripts used to run the experiments.

https://doi.org/10.5281/zenodo.8327204

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Romano and Wang

REFERENCES
[1] [n. d.]. Browser Market Share Worldwide. https://gs.statcounter.com/browser-

market-share.
[2] [n. d.]. Chromium. https://www.chromium.org/Home/.
[3] [n. d.]. Clang C Language Family Frontend for LLVM. https://clang.llvm.org/.
[4] [n. d.]. Clang.Cindex — Libclang 14.0.6 Documentation.

https://libclang.readthedocs.io/en/latest/_modules/clang/cindex.html.
[5] [n. d.]. Inline Functions, C++ FAQ. https://isocpp.org/wiki/faq/inline-

functions#inline-and-perf.
[6] [n. d.]. Intel C/C++ Compilers Complete Adoption of LLVM.

https://www.intel.com/content/www/us/en/developer/articles/technical/adoption-
of-llvm-complete-icx.html.

[7] [n. d.]. The LLVM Compiler Infrastructure Project. https://llvm.org/.
[8] [n. d.]. Llvm-Test-Suite/Matrix.c at Main · Llvm/Llvm-Test-Suite.

https://github.com/llvm/llvm-test-suite.
[9] [n. d.]. LLVM’s Analysis and Transform Passes — LLVM 13 Documenta-

tion. https://releases.llvm.org/13.0.0/docs/Passes.html#argpromotion-promote-
by-reference-arguments-to-scalars.

[10] [n. d.]. Main — Emscripten 3.1.1-Git (Dev) Documentation.
https://emscripten.org/.

[11] [n. d.]. Optimizing Code — Emscripten 3.1.6-Git (Dev) Documentation.
https://emscripten.org/docs/optimizing/Optimizing-Code.html.

[12] [n. d.]. Puppeteer | Tools for Web Developers.
https://developers.google.com/web/tools/puppeteer.

[13] [n. d.]. SpiderMonkey — Firefox Source Docs Documentation. https://firefox-
source-docs.mozilla.org/js/index.html.

[14] [n. d.]. TurboFan · V8. https://v8.dev/docs/turbofan.
[15] [n. d.]. Using JavaScript andWebCL for Numerical Computations: A Comparative

Study of Native and Web Technologies: ACM SIGPLAN Notices: Vol 50, No 2.
https://dl.acm.org/doi/abs/10.1145/2775052.2661090.

[16] [n. d.]. V8 JavaScript Engine. https://v8.dev/.
[17] [n. d.]. What Is Rustc? - The Rustc Book. https://doc.rust-

lang.org/rustc/index.html.
[18] 2022. Binaryen. WebAssembly.
[19] 2022. Libsodium. https://www.npmjs.com/package/libsodium.
[20] 2022. Llvm/Llvm-Test-Suite/SingleSource/Benchmarks/Misc-C++/Bigfib.Cpp.

LLVM.
[21] 2022. Llvm/Llvm-Test-Suite/SingleSource/Benchmarks/Misc-C++/Huffbench.c.

LLVM.
[22] 2022. Llvm/Llvm-Test-Suite/SingleSource/Benchmarks/Polybench/Linear-

Algebra/Kernels/Cholesky/Cholesky.c. LLVM.
[23] Alan and Weihang. 2023. Dataset and Experiment Scripts for "When Function In-

lining Meets WebAssembly: A Counterintuitive Effect on Runtime Performance".
https://doi.org/10.5281/zenodo.8327204

[24] Antoine. 2013. Answer to "Clang Optimization Levels".
[25] Clemens Backes. [n. d.]. Liftoff: A New Baseline Compiler for WebAssembly in

V8 · V8. https://v8.dev/blog/liftoff.
[26] Matteo Basso. 2022. Awesome Wasm.
[27] Eli Bendersky. [n. d.]. Parsing C++ in Python with Clang.

https://eli.thegreenplace.net/2011/07/03/parsing-c-in-python-with-clang.
[28] Aart JC Bik, David L Kreitzer, and Xinmin Tian. 2008. A case study on compiler

optimizations for the Intel® Core TM 2 Duo Processor. International Journal of
Parallel Programming 36, 6 (2008), 571–591.

[29] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surveys 53, 1
(Feb. 2020), 4:1–4:36. https://doi.org/10.1145/3363562

[30] Jason Cong, Bin Liu, Raghu Prabhakar, and Peng Zhang. 2012. A study on the im-
pact of compiler optimizations on high-level synthesis. In International Workshop
on Languages and Compilers for Parallel Computing. Springer, 143–157.

[31] Frank Denis. 2023. Libsodium.Js.
[32] Craig Disselkoen, John Renner, ConradWatt, Tal Garfinkel, Amit Levy, and Deian

Stefan. 2019. Position Paper: Progressive Memory Safety for WebAssembly. In
Proceedings of the 8th International Workshop on Hardware and Architectural Sup-
port for Security and Privacy (HASP ’19). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3337167.3337171

[33] Richard Finney and Daoud Meerzaman. 2018. Chromatic: WebAssembly-Based
Cancer Genome Viewer. Cancer Informatics 17 (Jan. 2018), 1176935118771972.
https://doi.org/10.1177/1176935118771972

[34] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 185–200.

[35] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of
Real-WorldWebAssembly Binaries: Security, Languages, Use Cases. In Proceedings
of the Web Conference 2021 (WWW ’21). Association for Computing Machinery,
New York, NY, USA, 2696–2708. https://doi.org/10.1145/3442381.3450138

[36] Manuel Hohenauer, Felix Engel, Rainer Leupers, Gerd Ascheid, and Heinrich
Meyr. 2009. A SIMD optimization framework for retargetable compilers. ACM
Transactions on Architecture and Code Optimization (TACO) 6, 1 (2009), 1–27.

[37] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. 2019. Not so
fast: analyzing the performance of webassembly vs. native code. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19). 107–120.

[38] Sébastien Jodogne. 2018. The Orthanc Ecosystem for Medical Imaging. Journal
of Digital Imaging 31, 3 (June 2018), 341–352. https://doi.org/10.1007/s10278-
018-0082-y

[39] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser Brown,
Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan. 2021. , : SFI
safety for native-compiled Wasm. In Proceedings 2021 Network and Distributed
System Security Symposium. Internet Society, Virtual. https://doi.org/10.14722/
ndss.2021.24078

[40] Jukka Jylänki. [n. d.]. WebAssembly for Native Games on the Web – Mozilla
Hacks - theWeb Developer Blog. https://hacks.mozilla.org/2017/07/webassembly-
for-native-games-on-the-web.

[41] Yuriy Kashnikov, Jean Christophe Beyler, and William Jalby. 2012. Compiler op-
timizations: Machine learning versus o3. In International Workshop on Languages
and Compilers for Parallel Computing. Springer, 32–45.

[42] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via
Equivalence modulo Inputs. ACM SIGPLAN Notices 49, 6 (June 2014), 216–226.
https://doi.org/10.1145/2666356.2594334

[43] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via
Guided Stochastic Program Mutation. ACM SIGPLAN Notices 50, 10 (Oct. 2015),
386–399. https://doi.org/10.1145/2858965.2814319

[44] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old Is
New Again: Binary Security of {WebAssembly}. In 29th USENIX Security Sympo-
sium (USENIX Security 20). 217–234.

[45] Daniel Lehmann and Michael Pradel. 2019. Wasabi: A framework for dynami-
cally analyzing webassembly. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1045–1058.

[46] Daniel Lehmann and Michael Pradel. 2022. Finding the Dwarf: Recovering Pecise
Types from WebAssembly Binaries. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(PLDI 2022). Association for Computing Machinery, New York, NY, USA, 410–425.
https://doi.org/10.1145/3519939.3523449

[47] Daniel Lehmann, Martin Toldam Torp, and Michael Pradel. 2021. Fuzzm: Finding
Memory Bugs through Binary-Only Instrumentation and Fuzzing of WebAssem-
bly. https://doi.org/10.48550/arXiv.2110.15433 arXiv:2110.15433 [cs]

[48] Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel. 2021. Learn-
ing to Make Compiler Optimizations More Effective. In Proceedings of the 5th
ACM SIGPLAN International Symposium on Machine Programming (MAPS 2021).
Association for Computing Machinery, New York, NY, USA, 9–20. https:
//doi.org/10.1145/3460945.3464952

[49] Jan Kasper Martinsen and Håkan Grahn. 2011. A Methodology for Evaluat-
ing JavaScript Execution Behavior in Interactive Web Applications. In 2011
9th IEEE/ACS International Conference on Computer Systems and Applications
(AICCSA). 241–248. https://doi.org/10.1109/AICCSA.2011.6126611

[50] Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg. 2011. A Comparative
Evaluation of JavaScript Execution Behavior. In Web Engineering (Lecture Notes
in Computer Science), Sören Auer, Oscar Díaz, and George A. Papadopoulos (Eds.).
Springer, Berlin, Heidelberg, 399–402. https://doi.org/10.1007/978-3-642-22233-
7_35

[51] Judy McConnell. [n. d.]. WebAssembly Support Now Shipping in All Major
Browsers | The Mozilla Blog. https://blog.mozilla.org/en/mozilla/webassembly-
in-browsers/.

[52] MDN contributors. [n. d.]. Performance.Now() - Web APIs | MDN.
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now.

[53] Benedikt Meurer. [n. d.]. An Overview of the TurboFan Compiler.
[54] Mozilla. [n. d.]. Download the Fastest Firefox Ever. https://www.mozilla.org/en-

US/firefox/new/.
[55] Paul Muntean, Sebastian Würl, Jens Grossklags, and Claudia Eckert. 2018. Cast-

San: Efficient Detection of Polymorphic C++ Object Type Confusions with
LLVM: 23rd European Symposium on Research in Computer Security, ES-
ORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part I. 3–25.
https://doi.org/10.1007/978-3-319-99073-6_1

[56] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan John-
son, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean
Tullsen, and Deian Stefan. 2021. Swivel: Hardening {WebAssembly} against
Spectre. In 30th USENIX Security Symposium (USENIX Security 21). 1433–1450.

[57] Node.js. [n. d.]. Node.Js. https://nodejs.org/en/.
[58] Phu H. Phung, David Sands, and Andrey Chudnov. 2009. Lightweight Self-

Protecting JavaScript. In Proceedings of the 4th International Symposium on In-
formation, Computer, and Communications Security (ASIACCS ’09). Association
for Computing Machinery, New York, NY, USA, 47–60. https://doi.org/10.1145/
1533057.1533067

https://doi.org/10.5281/zenodo.8327204
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3337167.3337171
https://doi.org/10.1177/1176935118771972
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1007/s10278-018-0082-y
https://doi.org/10.1007/s10278-018-0082-y
https://doi.org/10.14722/ndss.2021.24078
https://doi.org/10.14722/ndss.2021.24078
https://doi.org/10.1145/2666356.2594334
https://doi.org/10.1145/2858965.2814319
https://doi.org/10.1145/3519939.3523449
https://doi.org/10.48550/arXiv.2110.15433
https://arxiv.org/abs/2110.15433
https://doi.org/10.1145/3460945.3464952
https://doi.org/10.1145/3460945.3464952
https://doi.org/10.1109/AICCSA.2011.6126611
https://doi.org/10.1007/978-3-642-22233-7_35
https://doi.org/10.1007/978-3-642-22233-7_35
https://doi.org/10.1007/978-3-319-99073-6_1
https://doi.org/10.1145/1533057.1533067
https://doi.org/10.1145/1533057.1533067

When Function Inlining Meets WebAssembly: Counterintuitive Impacts on Runtime Performance ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[59] Louis-Noël Pouchet and Tomofumi Yuki. [n. d.]. PolyBench/C.
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/.

[60] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan
Bhargavan. 2019. Formally Verified Cryptographic Web Applications in We-
bAssembly. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco, CA, USA, 1256–1274. https://doi.org/10.1109/SP.2019.00064

[61] Alan Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang. [n. d.].
Wobfuscator: Obfuscating JavaScript Malware via Opportunistic Translation to
WebAssembly. ([n. d.]), 16.

[62] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An Em-
pirical Study of Bugs in WebAssembly Compilers. In 2021 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 42–54. https:
//doi.org/10.1109/ASE51524.2021.9678776

[63] Alan Romano and Weihang Wang. 2020. WASim: Understanding WebAssem-
bly Applications through Classification. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 1321–1325. https:
//doi.org/10.1145/3324884.3415293

[64] Alan Romano and Weihang Wang. 2020. WasmView: Visual Testing for We-
bAssembly Applications. In Proceedings of the 42nd International Conference on
Software Engineering Companion.

[65] Alan Romano, Yunhui Zheng, and Weihang Wang. 2020. MinerRay: Semantics-
Aware Analysis for Ever-Evolving Cryptojacking Detection. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’20). Association for Computing Machinery, New York, NY, USA, 1129–1140.
https://doi.org/10.1145/3324884.3416580

[66] Daniel Smilkov, Nikhil Thorat, and Ann Yuan. [n. d.]. Introducing the WebAssem-
bly Backend for TensorFlow.Js.

[67] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA 2016). Association for Com-
putingMachinery, New York, NY, USA, 294–305. https://doi.org/10.1145/2931037.
2931074

[68] Theodoros Theodoridis, Tobias Grosser, and Zhendong Su. 2022. Understand-
ing and Exploiting Optimal Function Inlining. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2022). Association for Computing Machinery, New
York, NY, USA, 977–989. https://doi.org/10.1145/3503222.3507744

[69] Marco Trivellato. [n. d.]. WebAssembly Is Here!
https://blog.unity.com/technology/webassembly-is-here.

[70] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan.
2019. CT-wasm: Type-Driven Secure Cryptography for the Web Ecosystem. Pro-
ceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 77:1–77:29.
https://doi.org/10.1145/3290390

[71] Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. 2019. Weakening
WebAssembly. Proceedings of the ACM on Programming Languages 3, OOPSLA
(Oct. 2019), 133:1–133:28. https://doi.org/10.1145/3360559

[72] Yutian Yan, Tengfei Tu, Lijian Zhao, Yuchen Zhou, and Weihang Wang. 2021.
Understanding the Performance of Webassembly Applications. In Proceedings
of the 21st ACM Internet Measurement Conference. ACM, Virtual Event, 533–549.
https://doi.org/10.1145/3487552.3487827

[73] Alon Zakai. 2018. The Binaryen Optimizer Goes Up To 4.
[74] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enu-

meration for Rigorous Compiler Testing. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2017). Association for Computing Machinery, New York, NY, USA, 347–361.
https://doi.org/10.1145/3062341.3062379

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/ASE51524.2021.9678776
https://doi.org/10.1109/ASE51524.2021.9678776
https://doi.org/10.1145/3324884.3415293
https://doi.org/10.1145/3324884.3415293
https://doi.org/10.1145/3324884.3416580
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/3503222.3507744
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3062341.3062379

	Abstract
	1 Introduction
	2 Background
	2.1 WebAssembly Compilation Pipeline
	2.2 WebAssembly Execution Pipeline

	3 Counterintuitive Inlining Example
	4 Methodology
	4.1 C/C++ Source Programs.
	4.2 Experiments Inspecting Inlining Effects.

	5 Implementation
	6 Evaluation
	6.1 RQ1: Significance of Counterintuitive Effects
	6.2 RQ2: Investigation of Function Characteristics Causing Counterintuitive Effects
	6.3 RQ3: Impact of Hot Functions on Counterintuitive Effects
	6.4 Case Study on a Real-World Application

	7 Discussion
	7.1 Limitations
	7.2 Threats to Validity
	7.3 Future Work

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	11 Data Availability
	References

