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ABSTRACT

WebAssembly is the newest language to arrive on the web. It
features a binary code format to serve as a compilation target for
native languages such as C, C++, and Rust and allows native appli-
cations to be ported for web usage. In the current implementation,
WebAssembly requires interaction with JavaScript at a minimum
to initialize and additionally to interact with Web APIs. As a re-
sult, understanding the function calls between WebAssembly and
JavaScript is crucial for testing, debugging, and maintaining appli-
cations utilizing this new language. To this end, we develop a tool,
WasmView, to visualize function calls made between WebAssembly
and JavaScript in a web application. WasmView also records the
stack traces and screenshots of applications. This tool can help in
supporting visual testing for interactive applications and assisting
refactoring for code updates. The demo video for WasmView can
be viewed at https://youtu.be/kjKxL7L7zxI and the source code can
be found at https://github.com/wasmview/wasmview.github.io.

ACM Reference Format:

Alan Romano and Weihang Wang. 2020. WasmView: Visual Testing for
WebAssembly Applications. In 42nd International Conference on Software
Engineering Companion (ICSE "20 Companion), May 23-29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3377812.3382155

1 INTRODUCTION

WebAssembly is a new bytecode designed for the web. It is de-
signed to efficiently perform the computationally-intensive opera-
tions unsuited for JavaScript. All major browsers including Chrome,
Firefox, Safari, and Edge support WebAssembly on their desktop
and mobile browsers since November 2017 [9]. In December 2019,
WebAssembly became an official web standard by the World Wide
Web Consortium (W3C) [15].

WebAssembly provides a compilation target for languages such
as C, C++ and Rust. Programs are ported to the web by compiling
to a WebAssembly binary using a compiler toolchain (e.g., Bina-
ryen [7]). Then, JavaScript WebAssembly APIs are used to run the
WebAssembly module alongside JavaScript. In its current form,
WebAssembly cannot directly access the Web APIs (e.g., the DOM,
Canvas, WebSockets, and WebWorkers API). Instead, JavaScript
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functions are passed as import functions. Additionally, WebAssem-
bly relies on JavaScript for module initialization. As a result, We-
bAssembly applications routinely make cross-language calls (be-
tween WebAssembly and JavaScript) to perform singular operations.
This essentially introduces problems on both worlds. Specifically, a
bug in an application could span across functions in both languages.
For instance, JavaScript libraries that manipulate window-level func-
tions could unexpectedly affect imported JavaScript functions in
WebAssembly modules. To support resolving dependencies from
code updates, a tool that can clarify the function calls of WebAssem-
bly programs and JavaScript programs is highly desirable. In addi-
tion, WebAssembly is commonly used in interactive applications
such as video games. A tool that enables visual testing to record
screenshots of the interactive apps and the stack traces can facilitate
testing and offline analysis.

Currently, WebAssembly debugging is limited to the develop-
ment tools built into browsers such as Chrome and Firefox. These
include functionalities such as viewing the stack and local variables
during execution. However, cross-language interaction must be
manually reconstructed through source inspection.

To this end, we develop WasmView to facilitate testing, debug-
ging, and maintenance of WebAssembly applications. WasmView
traces function calls between WebAssembly and JavaScript to con-
struct visual call graphs that clarify function interactions for a
simplified refactoring process. It supports visual testing of these ap-
plications by logging the stack traces and screenshots of application
execution for future offline analysis.

2 BACKGROUND

WebAssembly is a statically typed language that defines four
value types: 132, 164, f32, and f64. 132 and 164 are 32-bit and
64-bit integers while 32 and f64 are 32-bit and 64-bit floating
points. The language is assembly-like, so all data structures are
composed of the four primitive types. Fig. 1 shows the compilation
of a C++ code snippet to WebAssembly. The C++ code on the left
performs variable assignments and an addition. The WebAssembly
text format in the middle is designed to be friendly for reading.
The text syntax presents the stack-based nature of the language
through nested expressions and shows examples of WebAssembly
instructions, such as i32.const and 132.add. The text format is
meant for debugging while the binary format on the right is how it
is delivered to and compiled by browsers.

3 WASMVIEW

WasmView is a visual testing tool for WebAssembly applications
that features (1) visual call graphs that capture WebAssembly and
JavaScript function calls, and (2) trace logs and screenshots for in-
teractive applications to support offline analysis and reproducing
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WebAssembly Text WebAssembly Bytes

00000000: 0061 736d 0100
0000 0185 8080 8000 0160
(func $add (result i32) | 00000010: 0001 7f03 8380

int add(){ (module
int b = 9; (memory 1)
int a =1+ b;
8080 0002 0000 0484 8080
00000020: 8000 0170 0000

(local $vare i32)
return a; i32.const @

} i32.1oad offset=4 0583 8080 8000 0100 0106
i32.const 16 00000030: 8180 8080 0000
i32.sub 079b 8080 8000 0306 6d65
tee_local $vare 00000040: 6d6f 7279 0200

Figure 1: WebAssembly code example.

defects. Fig. 2 shows screenshots of the tool. First, to use WasmView,
a WebAssembly application developer enters a URL into the system
as shown in Fig. 2(a). Fig. 2(b) shows the interactive browser dis-
played to the app developer so that the developer can interact with
the app. Fig. 2(c) shows an example of the stack traces collected
during a 30-second scan. Finally, Fig. 2(d) shows the visual call
graph generated for the page.

As shown in Fig. 3, WasmView is comprised of two major com-
ponents: a Trace Collector component and a Visualizer component.
The Trace Collector is responsible for collecting stack traces, and
the Visualizer uses the stack traces to construct visual call graphs
for WebAssembly and JavaScript function calls. WasmView also
logs the stack traces and screenshots of interactive applications
when the app developer interacts with the app. These recorded
interaction traces and screenshots can be used to support offline
analysis and reproducing defects efficiently.

3.1 Trace Collector

The Trace Collector is responsible for collecting stack traces that
capture function calls between JavaScript and WebAssembly. To
construct call graphs for identified WebAssembly programs across
language boundaries, stack traces are used because they contain the
chain of JavaScript functions calling exported WebAssembly func-
tions (i.e., JavaScript to WebAssembly calls), as well as the imported
JavaScript functions called by WebAssembly (i.e., WebAssembly to
JavaScript calls). This is achieved by instrumenting the JavaScript
WebAssembly APIs and imported JavaScript functions through
the Chromium DevTools controlled by the Puppeteer [6] library.
Chromium DevTools is a suite of development tools that allow pro-
filing and modifying a web page as well as controlling the network
resources fetched. Puppeteer is a Node.js package that provides an
API to interact with the DevTools protocol programmatically.

Fig. 4 shows the Puppeteer connection that accesses the page of
a given URL through the Chromium DevTools. In particular, Pup-
peteer’s evaluateOnNewDocument method is used to instrument
the global window object’s WebAssembly object (@). Internally, the
instantiate and instantiateStreaming methods of the wind-
ow.WebAssembly object are instrumented with code shown in Fig. 5.
The stack trace is collected through the stack field of Error object
(i.e., Error().stack) when instantiate is called (Fig. 5, line 3).
An Error object is used because it can be accessed from any execu-
tion context, including strict-mode scripts [11]. The stack trace is
recorded into a storage object in the window object (Fig. 5, line 4).
When the page finishes executing, the storage object in the window
object is retrieved using Puppeteer’s evaluateHandle method (@).
Moreover, the WebAssembly. Instance object returned from both
methods is also instrumented to collect stack traces when any ex-
ported methods are invoked (Fig. 5, lines 8-9).
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Since WebWorker threads have isolated scopes, the WebAssembly
object on each Worker’s scope is instrumented to collect the same
details as done for the window.WebAssembly object (@ and @).

3.2 Visualizer

The Visualizer is responsible for displaying the call graphs that
capture the WebAssembly and JavaScript function calls. The visual
call graphs are constructed by processing the stack trace obtained
from the Trace Collector. On the client side, React [13] handles
rendering of the page and sending requests to the server, and the
mxGraph [8] library draws the constructed call graphs.

4 IMPLEMENTATION AND INSTALLATION

4.1 Implementation

WasmView is a web application running on Node.js [5]. The web
server is powered by the Next.js framework [18]. It is implemented
utilizing React for the client-side app and mxGraph to draw the
graph visualizations.

It starts with a homepage allowing a user to enter the URL of
the web application that they would like to analyze. Once the URL
is submitted, the web server uses the Puppeteer library to start a
new instance of the Chromium browser and inject the instrumen-
tation code before any scripts are run. While the browser visits the
URL, the instrumented Chromium instance is shown to the user to
interact with the web application in order to trigger WebAssembly
actions. The browser stays on the page for 30 seconds. Puppeteer
then collects the stored stack traces before the browser instance is
closed. The web server sends the traces to the client-side application
where the visual call graph is drawn from the traces.

4.2 Installation

The prerequisites for installation are Node.js and Git. The applica-
tion source can be found at https://github.com/wasmview/wasmvie-
w.github.io. To get the tool source code, run the command:

$ git clone
https://github.com/wasmview/wasmview.github.io.git
After this, the following commands can be run in the project folder:
$ npm install
$ npm run build
$ npm run prod

npm install installs the tool’s dependencies. npm run build
generates the server pages. The web server is started with the
command, npm run prod, and can be accessed at the address
printed after the command. Settings, such as the server port, can
be modified in the config. json file in the project root.

4.3 Performance

WasmView performs dynamic analysis through instrumentation
and carries a runtime overhead. For the messaging app cyph.app,
the instrumentation and graph construction added an additional
2.774 seconds of overhead compared with the original time of the
scan. For the more complex game diep.io, the overhead was 5.998
seconds.
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This is a utility to analyze a website using
WebAssembly of your choosing. You can enter a
webpage URL below:
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Scan Results for
https://diep.io

“"window": "instantiate": || "https://static.diep.io/
build_Sd3c852ad8642¢8b1dad7cFad3a007b4adb15c8!
35:1:33789"
“InstantiateStreaming":| |,
“instantiateStreamingFileHashes": | |,"exportCalls”:
“_33ecef9a”: ["_33ecef9a”,"https://static.diep.io/
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15:1:99666", “func”, "callRuntineCallbacks",

B ", "doRun", "https: //static.diep.i
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js:1:110 c3bd50": [ "_1cf3bd50", "https://
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(a) Scanning URL (b) Interactive Browser

(c) Logged Calls (d) Resulting Call Graph

Figure 2: WasmView screenshots. (a) shows the first step starting the scan, (b) shows the next step where the browser opens to
interact with the app, (c) shows the collected stack traces during a scan, and (d) shows the visual call graph made for the app.
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Figure 3: WasmView overview.
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Figure 4: Collect stack trace with Puppeteer.

WebAssembly.instantiate;
(buffer, importObject) => {

1 var originallnstantiate =
2 WebAssembly.instantiate =
3 var frames = new Error().stack;

4 recordInstantiateCall(frames);

5 var newImport = instrumentImportCalls(importObject);
6 return originallnstantiate(buffer, newImport)

7 .then( (instance) => {

8 var newInstance = instrumentExportCalls(instance);
9 return newInstance;

10 DE

no}

Figure 5: Instrumentation code to collect stack trace.

5 CASE STUDY

In the past two years, many compelling use cases for WebAssem-
bly have emerged due its performance advantage and capability
of porting native code to the web. For example, WebAssembly has
been used to implement games (e.g., diep.io [16]), barcode reader
applications (e.g., Dynamsoft [4], eBay [12]), and image analysis

messaging apps (e.g., cyph.app [1]).

The visual call graphs and the screenshots effectively facilitate
the applications’ development. In this section, we use two exam-
ples to show how WasmView helps visual testing for the cases
that (1) the WebAssembly application is interactive, and (2) the
WebAssembly application has API updates.

5.1 Testing for Interactive Applications

diep.io [16] is an online multiplayer game built using the Unity
game engine [17]. It features a WebSocket connection to handle
multiplayer communication. Fig. 6 shows simplified JavaScript and
WebAssembly interactions for diep.io:

e Update UI and game state

oLoud image, audio, video resources

Canvas eForwurd game data to WA handler Game
WebAudio Engine
WebSocket |- ~| Shared Memory |«--------- »

o Share game data via shared memory

e Receive game data from other players

WebSocket
Figure 6: The workflow of the game app diep.io.

@ diep.io invokes an exported WebAssembly function to initialize
the game (by loading image, audio and video resources).
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@ The page then opens a WebSocket and registers the WebSocket’s
onMessage method to listen to other players’ actions.

@ Since WebAssembly cannot directly interact with the WebSocket
APIs, messages received through the WebSocket are forwarded to
another exported WebAssembly function.

@ Internally, the WebAssembly game engine computes a lot of
math equations. The results of these computations are shared with
JavaScript through a global DataView object [10].

@ Using the shared memory, a JavaScript function in a loop to
periodically redraws the screen and updates the game state.

R Update UI and game state
Mouse events trigger

game state computation Browser_mainLoop_runner()
P
canvas.onmousemove() runiter()
! —
mouse() browserlterationFunc()
Shared .
S EELEE I — —i->( Memory
Buffer
wasm-function[1213]:0xab9ed()
Legend \\
I WebAssembly Export \ wasm-function[347]:0x8b2ec()
- WebAssembly Internal \ .
I imported JavaScript \ ~

Figure 7: Update UI and game state for the .mousemove()
event.

When a developer interacts with the game using mouse and
keyboard movements, WasmView outputs visual call graphs for
JavaScript and WebAssembly functions which assists in testing
complex interactive applications. Fig. 7 shows the traces of steps
@ and @ for a .mousemove() event (other steps are omitted
for simplicity). In the figure, the left side shows the function calls
when the developer moves the mouse in the game canvas. The
JavaScript event handler invokes the exported WebAssembly func-
tion _77a9e54a() to update the game state stored in a memory
buffer shared between WebAssembly and JavaScript. The right-side
call graphs show the traces to update the Ul and game state. The
JavaScript function Browser_mainLoop_runner() is invoked pe-
riodically to eventually call the JavaScript import _9e9e7ca() to
update the UI from the global game state in the shared buffer.

To enable offline analysis and reproducing defects, WasmView
saves trace logs and screenshots of the interactive applications
when scanned. These can be used to construct visual call graphs
for moments matching the corresponding application screenshots.

5.2 Refactoring for API Updates

WasmView can support code maintenance when refactoring for
APT updates. Refactoring JavaScript may not lead to syntactic er-
rors but can still cause runtime errors. This means that JavaScript
functions calling a WebAssembly function that has undergone a
type change may encounter runtime errors that cannot be easily
noticed by the developer. Refactoring to resolve code dependen-
cies is especially important for web applications using third-party
libraries. In a concurrent study on over 3,000 WebAssembly applica-
tions, we found that over half (53.7%) of the observed WebAssembly
applications are from third-party services.
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As an example, we will look at the encrypted messaging app,
cyph.app. In order to perform the encryption, it relies on several
cryptographic libraries that mix JavaScript and WebAssembly code.
Using WasmView, visual call graphs can be generated to see how
the multiple libraries interact. The call graph generated from this
app (omitted in the paper) shows that the WebAssembly export
function, m(), is called by three JavaScript functions from separate li-
braries, _mceliecejs_decrypted_bytes(), _ntrujs_encrypt(),
and _sidhjs_decrypt(). Manual inspection shows that function
m() performs bit operations on a key. Consider the case where m()
is refactored, changing its parameters. Callers of m() must also be
updated to accommodate the change. The visual call graphs made
by WasmView assists in finding the functions that require changes.

6 CONCLUSION AND FUTURE WORK

We developed WasmView, which features visual call graphs
capturing WebAssembly-JavaScript interactions, recorded stack
traces, and screenshots of interactive WebAssembly applications.
We demonstrate two case studies detailing how WasmView could
be used to assist development, debugging, and code refactoring for
interactive applications.

In the future, we plan to conduct a user experience study on
the tool. We plan on approaching web developers working on We-
bAssembly projects and compare a group of developers using our
tool with a group that relies only on browser tools on criteria such
as time to locate defects, time to resolve defects, and time to refactor
the code. In addition, we plan to include calls from other WebAPIs.
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