
BFTDETECTOR: Automatic Detection of Business
Flow Tampering for Digital Content Service

I Luk Kim
Department of Computer Science

Purdue University
West Lafayette, USA
kim1634@purdue.edu

Weihang Wang
Department of Computer Science
University of Southern California

Los Angeles, USA
weihangw@usc.edu

Yonghwi Kwon
Department of Computer Science

University of Virginia
Charlottesville, USA

yongkwon@virginia.edu

Xiangyu Zhang
Department of Computer Science

Purdue University
West Lafayette, USA

xyzhang@cs.purdue.edu

Abstract—Digital content services provide users with a wide
range of content, such as news, articles, or movies, while
monetizing their content through various business models and
promotional methods. Unfortunately, poorly designed or unpro-
tected business logic can be circumvented by malicious users,
which is known as business flow tampering. Such flaws can
severely harm the businesses of digital content service providers.

In this paper, we propose an automated approach that discov-
ers business flow tampering flaws. Our technique automatically
runs a web service to cover different business flows (e.g.,
a news website with vs. without a subscription paywall) to
collect execution traces. We perform differential analysis on the
execution traces to identify divergence points that determine how
the business flow begins to differ, and then we test to see if the
divergence points can be tampered with. We assess our approach
against 352 real-world digital content service providers and
discover 315 flaws from 204 websites, including TIME, Fortune,
and Forbes. Our evaluation result shows that our technique
successfully identifies these flaws with low false-positive and false-
negative rates of 0.49% and 1.44%, respectively.

Index Terms—JavaScript, business flow tampering, dynamic
analysis, vulnerability detection

I. INTRODUCTION

Digital content services are web-based e-businesses provid-
ing users access to various online content, including news,
entertainment, and technology articles. Those contents are
delivered in diverse formats such as text, audio/video, or
image. For example, Netflix, Amazon Prime Video, and The
New York Times are well known digital content providers.
Digital content services take up a significant portion of the
e-commerce business. Specifically, the global digital content
creation market size is estimated to be $11 billion USD in
2019 and is expected to reach $38.2 billion by 2030 [29].
Business Models of Content Service Providers. Content
providers use a few business models to monetize their services.
For example, news websites allow access to premium articles
only to the users who have subscribed or paid for the access.
Social networking services such as Facebook make profits

via advertisements instead of asking for payments from users
directly. We define four business models as follows:

1. Advertising model delivers promotional marketing mes-
sages (i.e., texts, images, and videos) to users and content
providers earn revenue from advertisers.

2. Subscription model typically uses a paywall method to
restrict access to certain content for the users who have
not subscribed or paid for the content.

3. Donation model relies on voluntary contributions to
support service providers (e.g., giving donation money).

4. Non-profit model is usually adopted by organizations
dedicated to public or social benefit (e.g., Wikipedia).

Advertising

55.8%

Advertising and Subscription

24.9%

Subscription

16.6%

Donation

2.2%

Non-profit

0.6%

Fig. 1: Business Models of 178 Digital Content Service
Providers in Alexa Top 500.

Figure 1 shows the business models of 178 digital content
service providers we collected from Alexa top 5001. Advertis-
ing (80.7%, including the websites with both advertising and
subscriptions) is the most common business model, followed
by a subscription (or paid content) business model. The result
shows that the business models are common for digital content
service providers, and advertising and subscriptions are the
two most popular models.

1The remaining 322 websites are not digital content providers. For example,
websites like Dropbox and Overleaf provide online application services (e.g.,
data creation and sharing functionalities), not focusing on delivering digital
contents. They are based on the subscription model.

Promotional Methods. A promotional method is a strategy
facilitating business models to maximize profits by either pre-
venting adversarial techniques or directing users for payment.

1. Anti-adblocker: The advertising business model has
been the most popular income source for digital content
service providers. However, Adblockers which allows
users to obtain contents without seeing the advertisements
imposed a significant threat. Anti-adblocker is a promo-
tional method that detects the presence of Adblockers to
prevent users with Adblockers from accessing content.
To access the content, users have to disable/uninstall
Adblockers or purchase an ad-removal pass.

2. Paywall: Paywall is a promotional method used in the
subscription business model. It restricts access to content
and asks for a subscription. There are two types of
paywalls: hard and soft. A hard paywall requires a paid
subscription to access any digital content, and a soft
paywall allows users to view the content a certain number
of times before requiring a paid subscription.

Business Flow Tampering (BFT). A recent work [32] in-
troduces the concept of Business Flow Tampering (BFT),
which when successfully happens, allows an attacker to access
content without going through a legitimate business flow
(i.e., by changing the execution flow of the business model
implementation). While it requires a strong adversary who is
capable of monitoring and perturbing the execution of client
web programs, the study shows that various digital content
services suffer from the BFT.

The consequence of the BFT can be catastrophic. For
example, a service provider that earns most of its revenue from
subscriptions would go out of business if users can circumvent
the subscription process (i.e., paywall). Moreover, a report [37]
indicates that BFT has become a real-world threat: software
or browser extensions aim to circumvent paywalls (e.g. [5])
are becoming increasingly popular. As a response, content
providers put their effort into protecting their revenue by using
techniques against BFTs. For example, almost 40% of the top
1,000 websites use anti-adblocker [22], showing the substantial
interest of the content providers on the BFT.

The cause of BFT is essentially an improper business model
implementation that relies on the insecure JavaScript execution
(that can be manipulated by attackers) for critical logic. Hence,
it is crucial to identify the implementation flaws so that
protection strategies can be applied. Unfortunately, a detection
method outlined by the existing work requires substantial
manual effort and domain expertise, hence not scalable.
Proposed Approach. In this paper, we propose an automated
approach that discovers business flow tampering (BFT) flaws
in the web client programs of digital content services. To
handle various web services where implementations of them
may vary, our approach leverages the fact that those web
services share a few business models and their key business
flows (i.e., processes). Focusing on the business model, we
develop generic approach that is less dependent on concrete
implementations of the web services.

Leveraging the business models, we propose a differential
analysis-based technique to identify the BFT flaws. First,
we run a web service twice where the first execution cov-
ers a legitimate business flow (e.g., accessing content with
a subscription) while the second execution tries to do the
same operation without going through the same business flow
(e.g., without the subscription). Second, we perform a novel
differential analysis on the two executions to pinpoint the
critical implementation of the business flow (e.g., checking
the subscription). Third, our approach automatically generates
test inputs that can tamper with legitimate business flows and
executes the web service with the test inputs to find the flaws.

The key enabling technique of our approach is a novel
differential analysis technique that systematically locates the
execution points that diverge, followed by execution muta-
tions. Specifically, we mutate the execution of client-side
JavaScript programs by adding, modifying, and removing
statements. Our system also automatically validates test results
using a clustering algorithm (i.e., Balanced Random Forest
classification). Mutated executions (e.g., skipping subscription
checking) achieving similar results to the executions of legit-
imate business flows (e.g., access to premium content with
subscription) suggest there can be BFT flaws. To this end, our
approach can automatically identify BFT flaws with little to
no manual effort and human interactions.

In summary, we make the following contributions:
• We propose a novel system, BFTDETECTOR, to find BFT

flaws. It automatically exercises business process on a
content provider’s website to identify the execution points
that can be tampered with.

• We generalize the business models and relate the mod-
els with website implementations, using the models to
exercise and trace diverse business flows.

• We develop a differential analysis algorithm to identify a
critical decision point of the business model by compar-
ing call traces between multiple executions.

• We apply our approach to 352 real-world digital content
service providers from Alexa top 500, and find 315 flaws
from 204 websites including TIME, Fortune, and Forbes.

II. MOTIVATION

We use two real-world examples, Los Angeles Times (LA
Times) [10] and StudentShare [12], to demonstrate how our
system can detect BFT in the real-world websites.
Advertisements on LA Times. LA Times is one of the most
popular newspaper service providers in the US, and it uses
advertising and subscription business models. Non-subscribers
can see a limited number of articles by seeing ads on article
pages. However, Adblockers can remove those advertisements,
undermining the business model. To safeguard their income
source, LA Times utilizes an anti-adblocker technique pro-
vided by Google Funding Choices [8]. When Adblockers are
detected, the user is prompted with a message that directs the
user to a subscription page, asking for payments.

Figure 2a shows the anti-adblocker process. When the main
page of the website is loaded, it injects ‘loader.js’ from

1: Hf = function(a) {

2: …

3: for (b=0; b<a.h.length; ++b){

4: var c = a.h[b];

5: if (0 === c.offsetHeight ||

0 === c.offsetWidth) {

6: a.j(c);

7: return;

8: }

9: }

10:}

fundingchoicesmessages.
google.com

main
page

latimes.
com

a.j

JS JS JS

Function Call stack

Adblock
Detected!

Hf

loader.js detection.js adwall.js

D

S2

S1

D Divergence point S Solutions

(a) LA Times

1: function unlockCallback(response, …){

2: if(response.success) {

3: …

4: var downloadUrl =

“/document/download?id=” + docId;

5: downloadUrl += getToken(docId);

6: location.href = downloadUrl;

7: …

8: return true;

9: } else {

10: location.href = getRedirect(response);

11: return true;

12: }

13: …

studentshare.com

JS

documentNewStructure.js

unlockDialogWithGa

unlockDialog

unlockCallback

$ $$

Pricing

Download

D

S3

(b) StudentShare

Fig. 2: Motivating Examples.

Google Funding Choice. After a series of function calls,
the loader script also injects ‘detection.js’ that detects
Adblockers. Specifically, the function Hf() gets a list of DOM
objects containing ads (line 1). For each DOM object, it checks
the sizes of the inserted ads (line 5), and if any of them are
not being shown properly, a.j() is called. Lastly, ‘adwall.js’
is injected to show the Adblocker detection message.
Subscription on StudentShare. The StudentShare site of-
fers a large number of essay samples. It provides a lim-
ited number of free essays, and a monthly subscription is
required to access the premium essay samples. Figure 2b
shows its business process for downloading premium essays.
When a user clicks the download button, it invokes the func-
tion unlockDialogWithGa(), which further calls the function
unlockDialog() to check if the user has access to the essay.
Then, the callback function unlockCallback() is triggered
when a response from the server arrives. It checks the variable
‘response.success’ (line 2), and starts downloading if the
variable’s value is ‘true’ (lines 2∼8). Otherwise, the user is
redirected to a subscription page (lines 10∼11).

A. Business Flow Tampering Flaws

The two websites have BFT flaws. First, in LA Times
(Figure 2a), the function call a.j(c) (line 6) that shows the
Adblocker detection message can be bypassed by removing
the call statement, or altering the result of the if statement
(line 5). Second, in the StudentShare website (Figure 2b), any
premium essays can be downloaded without purchasing the
subscription by forcibly entering the true branch (lines 3∼8)
of the if statement (line 2). These attack scenarios are highly
achievable because the important business process written in
JavaScript (JS) are running on the client-side, and an attacker
can tamper with the flow using JS debuggers provided by web
browsers. To this end, the tampering flaws can compromise the
business well-being of these websites.

B. Business Model vs. Implementation

The underlying cause of the BFT flaws is a discrepancy
between the assumption of the business models and the
models’ implementation. In other words, the business models
do not assume the possibility of tampering with the processes,
while the real-world implementation of the business models

can be tampered with. Ideally, it is secure to implement
the business models and the promotional methods with two
principles: 1) important business process should be handled
on the server-side, and 2) the client only displays final data
rendered at the server. However, the above principles are not
well obeyed in practice: (i) developers are often unaware or
overlook the possibility that JS code can be tampered with on
the client-side. In Figure 2b, decisions to initiate download
or redirect to a subscription page are critical business logic
that can be tampered with, as they are on the client-side. (ii)
existing web ecosystems’ complex internal structures make it
hard to achieve the principles. For example, ad ecosystems
today integrate multiple 3rd-parties and run complex bidding
processes multiple times to provide effective interest-based
ads. The ad ecosystems decide to run them on the client-side
due to the efficiency (i.e., running them on the server will
cause significant overhead).

C. BFTDETECTOR: Automated Tampering Detection

Our approach automatically detects the existence of BFT
flaws, including the location of the flawed code and its cause.
Specifically, we automatically identify a business model of
the website by analyzing execution traces of the website fol-
lowing different business flows (see Section III-A1). We then
conduct differential analysis to identify divergence points of
the executions across different business flows. For instance, we
detect the function Hf() in Figure 2a and unlockCallback()
in Figure 2b as divergence points (D) because the executions
of the different business flow paths become different from the
points (Post-Divergence).

Lastly, our technique tries to test whether the divergence
points can be tampered with by forcibly executing a branch or
skipping statements. Specifically, in Figure 2a (LA Times), our
system visits the page with Adblockers, and try to mutate the
original execution at the divergence point (Hf()) by flipping
the if branch (S1) or skipping the call ‘a.j(c)’ (S2). In
Figure 2b (StudentShare), we attempt to download a premium
essay without a subscription by forcibly executing the true
branch of (S3), as if it were part of the subscription flow.

III. SYSTEM DESIGN

Overview. Figure 3 shows a brief overview of our BFT
detection system, which consists of five phases:

① Dynamic
Execution

Trace
Collection

P|B

Call
Divergence

② Call Trace
Differential

Analysis

③ Test Input
Generation ④ BFT Testing

Testing
Inputs

Execution
Information

Test Results
Snapshots

⑤ Test Result
Verification

P B

Execution Result
Snapshots

P B

Call Trace
Fig. 3: System Overview

Subscription +
Paywall

Advertising +
Anti-adblocker

Check Content
Access

Content Paywall

Get Content &
Subscription Info

Check Anti-
adblocker

Content
& Ad

Adblocker
Detection

Msg

Get Content & AdInformation Gathering
(Pre-Divergence)

Decision Making w/
Promotional Methods
(Divergence Point)

Data Rendering
(Post-Divergence)

Fig. 4: Generalized Business Process.

1 Dynamic Execution Trace Collection (Section III-A).
BFTDETECTOR collects dynamic execution trace by exer-
cising business processes according to the business model.
The output includes call traces and execution result snapshots
which are essentially screenshots and HTML/DOM data.

2 Call Trace Differential Analysis (Section III-B). Our
system performs differential analysis on the function call
trace collected for different business flows, identifying call
divergences points where executions start to differ.

3 Test Input Generation (Section III-C). We generate test
inputs containing statements data to be mutated by using the
call divergence points from the previous step.

4 BFT Testing (Section III-D). Our system repeatedly visits
the web page to mutate the execution according to the test
inputs generated from the previous step.

5 Test Result Verification (Section III-E). We measure
whether our system successfully tampers with the business
process by comparing snapshots from the test and the results
from the original execution. A machine learning technique is
used to calculate the degree of similarity between snapshots.

A. Dynamic Execution Trace Collection

1) Business Model Driven Trace Collection: Given a web-
site using known business models such as advertising and
subscription, we automatically exercise the website to execute
the business process. Figure 4 shows examples of generalized
processes of business models. The two diagrams on the right
side represent the processes of two business models and the
corresponding promotional methods, and the left side shows a
generalized business process. The service providers first gather
information and then decide with respect to the promotional
methods and users’ current states (e.g., whether a user made

TABLE I: Business Process Procedures

Procedure Name Browsing Operations

Login(JS)
1. Open a browser
2. Perform logging in by replaying JS
3. Return the session S

TriggerPaywall(P |JS, S)
1. Open a browser with a session S
2. Visit all pages ∈ P or replay JS
3. Return the session S

CollectTrace(P |JS, S)

1. Open a browser with a session S
2. Visit any page ∈ P or replay JS
3. Collect execution trace & snapshot
4. Close the browser
5. Repeat 3 times∗

*: In all the evaluated cases, we have reached a fixed point within
three times repetition.

TABLE II: Business Process Execution Driver

Business
Model

Promotional
Method

Browsing Procedure

Passing Run Blocking Run

Subscription

Hard Paywall

1 S = Login(JSlogin)
2 CollectTrace(Psub , S)

1 CollectTrace(Psub ,∅)

1 CollectTrace(Pfree ,∅)∗ 1 CollectTrace(Psub ,∅)

Soft Paywall 1 CollectTrace(Pfree ,∅)
1 S = TriggerPaywall(
Ppaywall ,∅)

2 CollectTrace(Pfree , S)

Advertising Anti-adblocker 1 CollectTrace(Pany ,∅)
1 Enable Adblocker extension
2 CollectTrace(Pany ,∅)

*: If free pages are also available.

a payment or not). The business flow diverges as a result of
the decision, delivering different contents to the users (e.g.,
showing premium content for a paid user, or redirecting to
a subscription page for a guest). Observe that the decision-
making logic causes business flows to diverge (i.e., divergence
point), which can be tampered (i.e., BFT).

2) Definition of Passing and Blocking Runs: To identify
the divergence point in the business model, we first obtain
executions covering two different business flows: a business
flow delivering desired content and another flow blocking the
content. Concrete executions of the two business flows are
defined as passing and blocking runs.

1. Passing Run. A passing run is an execution that success-
fully delivers the digital content (e.g., an execution with
a paid paywall or with advertisements displayed).

2. Blocking Run. A blocking run represents the business
flow that blocks digital content delivery for various rea-
sons (e.g. no subscription, or Adblocker detected).

For instance, successfully downloading the premium essay
with a valid subscription in the StudentShare is a passing run,
while redirecting to the subscription page is a blocking run.

3) Automated Business Flow Execution Driver: Our system
automatically exercises business flows with respect to the

business model to obtain the passing and blocking runs. We
first define three key business process procedures, where each
procedure is a sequence of browsing operations (e.g., open
a browser and visit a page) that can exercise key imple-
mentations of the business models when executed. We then
obtain the passing and blocking runs by executing the business
process procedures on the websites.
Variables of Business Process. We define five variables to de-
scribe business process procedures (and browsing operations).

1. Psub is content pages requiring a subscription.
2. Pfree is a list of free pages (accessible without a sub-

scription).
3. Ppaywall indicates a maximum number of pages allowing

free access of content, before it triggers a paywall.
4. Pany represents any content pages.
5. JS is a Puppeteer [11] script recorded by a tester

providing automated browsing.

Business Process Procedures. Table I shows three business
procedures that serve as building blocks for exercising the
flows in the business model. Table II shows the browsing
procedures for each promotional method to exercise the two
distinct business flows (i.e., passing and blocking runs). Our
system repeats the collection process three times in order to
gather enough execution traces that contain business processes.
Our system also supports replaying tester-recorded brows-
ing activities (in JS file format) from the Chrome DevTool
recorder [1]. This enables our system to emulate website-
specific browsing procedures (e.g., logging in or clicking the
download button in the StudentShare case (Figure 2b)).

4) Call Trace Collection: We collect function call traces
during the execution driven by the business flow execution
driver. On a function call, we record the (1) Caller function,
(2) Function Call Statement, and (3) Callstacks. Intuitively,
the call trace includes information about who (Caller) called
whom/at where (Call statement) and in which circumstance
(Callstack), and we call this set of data a call signature. The
callstack is stored as a hashed string to enable fast comparison
in the differential analysis (Section III-B).
Bytecode Level Instrumentation. Instrumenting complex and
often obfuscated real-world programs is challenging. Hence,
we modify the V8 JS engine [15] to dynamically instrument at
the JS bytecode level (we have changed around 1,600 LOC).
This design choice also handles various difficult-to-instrument
primitives such as anonymous/asynchronous functions and
dynamically generated code.
Performance and Space Optimization. Call trace collection
incurs high overheads due to, in part, a high volume of function
calls. To minimize the overhead, we optimize the built-in call
stack collection procedure. Specifically, when we retrieve a
full-sized call stack from the browser, it constructs an object
containing various unnecessary information (e.g., metadata
of scripts, functions, and stack trace), leading to substantial
performance and memory overhead. Hence, we prune out the
unnecessary items in the call stack. In addition, we deploy
a blacklisting approach filtering out JS files that are not

Algorithm 1 Call Divergence Point Discovery
Input: P,B : lists of call traces collected from passing and blocking runs,

where Pi ∈ P or Bi ∈ B is a list of call signature c, and ci ∈ c
denotes a set (Caller, Call Statement, Callstack)

Output: CD : a list of call divergence data, where CDi ∈ CD denotes a
set (Divergence function, Call statement, Passing or Blocking Run)

1: function EXTRACTCALLDIVERGENCE(P,B)
2: CD ← {}
3: Pint ← INTERSECTION(P)
4: Bint ← INTERSECTION(B)
5: Puniq ← Pint − UNION(B)
6: Buniq ← Bint − UNION(P)
7: PBint ← INTERSECTION({Pint , Bint})
8: for each pb ∈ PBint do
9: for each p ∈ Puniq do

10: if pb.Callstack ⊂ p.Callstack then
11: CD ← CD ∪ {p.Caller , p.Call Stmt , “Passing Run”}
12: for each b ∈ Buniq do
13: if pb.Callstack ⊂ b.Callstack then
14: CD ← CD ∪ {b.Caller , b.Call Stmt , “Blocking Run”}
15: return CD

relevant to the business process of our interest, such as internal
functions of common JS libraries (e.g., jQuery) or third-party
tracking code. For those libraries, we only trace the interface
functions in our call trace (i.e., the first call to the libraries). As
we show in Section IV-D, the above optimizations successfully
reduce the overhead by half. Besides the call trace, we also
record a snapshot (screenshot and HTML/DOM data) of the
resulting page for each run. The recorded snapshots are used
in the test result verification step described in Section III-E.
Contributions. BFTDETECTOR automatically explores the
business process (passing and blocking runs) of the target
website using our business process execution driver. In
addition, it collects dynamic execution traces efficiently with
bytecode-level instrumentation and optimizations.

B. Call Trace Differential Analysis

Given the collected call traces of the passing and blocking
runs, we perform a differential analysis to identify a divergence
point representing the critical decision-making point in the
business model. For instance, in Figure 2a (LA Times), Hf()
is the call divergence point since the execution flows of passing
and blocking runs reach the function, but only blocking flow
continues to a.j(). Similarly, unlockCallback() in Figure 2b
is the call divergence point.
Algorithm. Algorithm 1 describes how we identify the call
divergence point. It takes two lists of call traces (P and B)
that are collected in Section III-A4. Each element (Pi and Bi)
in the lists contains the call signatures, consisting of (caller,
call statement, and callstack) as discussed in Section III-A4.

We first obtain intersections for each list of call traces P and
B (lines 3∼4). INTERSECTION() gathers call signatures that
exist in all the runs in a set, essentially pruning out execution
flows that are not necessary. For example, assume that our sys-
tem targets a newspaper website using the subscription busi-
ness model. In the passing runs, we visit three subscription-
only article pages with a paid account, and visit the pages
without the account in the blocking runs. INTERSECTION()

identifies and keeps call signatures from essential business
processes triggered every time such as checking subscription,
filtering out processes that are not always appearing (e.g., a
video available only in one of the article pages).

Then, we identify unique call signatures for passing (Puniq)
and blocking runs (Buniq) at lines 5∼6 using the function
UNION that combines call signatures. Specifically, to obtain
Puniq , we subtract the union of call signatures of blocking
runs (UNION(B)) at line 5. Similarly, we obtain Buniq by
subtracting the union of P from the intersection of B at
line 6. For instance, our major interest from the previous
example is to identify and exercise the exclusive business flows
that depend on the outcome of subscription checking. The
subtraction procedure can prune out executions from common
business flows, such as getting subscription data.

Next, it identifies call divergence points by leveraging the
intersection (Pint and Bint ; pre-divergence) and unique (Puniq

and Buniq ; post-divergence) call traces. In particular, we detect
a divergence point if a function is (1) a callee of a common
signature available in both runs and also is (2) a caller of a
distinct call signature existing on one side of the runs, and (3)
their context is identical. Specifically, the algorithm first gets
the intersection of Pint and Bint (line 7) to obtain common
call signatures on both runs (pre-divergence). Then, it checks
whether the call stack before the divergence (PBint) can be
found in after the divergence (i.e., post-divergence represented
by Puniq and Buniq) at lines 10 and 13. If it finds such a case,
the caller of post-divergence is considered a call divergence
point, and we store it to CD (lines 11 and 14). For example,
unlockCallback() in Figure 2b (the StudentShare example) is
the call divergence point. This is because (1) the call signature
unlockDialog() → unlockCallback() is available in both
passing and blocking runs (pre-divergence), and (2) there
exist call signatures from post-divergence: unlockDialog() →
getToken() and unlockDialog() → getRedirect(), (3) with
the same call stacks.
Contributions. We propose and design a differential anal-
ysis to identify divergence points where critical business
decisions are made. Our algorithm automatically finds di-
vergence points that can be tested to find BFT flaws.

C. Test Input Generation

We generate test inputs that can potentially bypass blocking
executions flows, or change them to passing flows by leverag-
ing the identified call divergence points. A test input contains
pairs of (1) a mutation point and (2) a mutation action. The
mutation point indicates a position of an expression/statement
to be changed, and the mutation action describes how to alter
the point based on the type of the expression/statement. For
example, if the type is a conditional (e.g. if, switch, ternary,
etc.), the action can be an identification of the branch (e.g.
true/false, or an index of a switch-case) that is to be entered
forcibly. For a function call type, the action can be skip, which
essentially disables the call statement.
Building CFGs for Mutation. We build CFGs for each
function containing the divergence points in the call divergence

2, 3, 4

5 7

10

11, 12 14

END

T F

T

T

F

F

1: function onArticlePageLoaded(){

2: var user = getUserInfo();

3: var contentMetadata =

getContentMetaData();

4: if(user.loggedIn == false){

5: redirectToLogInPage();

6: } else {

7: if(user.accountType=="premium"){

8: showContent();

9: } else {

10: if (user.remainFreeView>0){

11: user.remainFreeView -= 1;

12: showContentAndPaywallInfo();

13: } else {

14: showPaywall();

15: }

16: }}}

8

Fig. 5: Illustrative Example for Test Input Generation

data to compute control dependencies. If a call divergence
is from a passing run, we generate a test input containing a
list of mutation points and mutation actions that can drive
the execution flow to the call divergence point. For a call
divergence point from blocking runs, we first generate a test
input that skips the call statement. Finally, we also generate
separate test inputs that alter the branch outcomes.

We illustrate the test input generation process by using a
simplified website with a softer promotional method as shown
in Figure 5. Specifically, onArticlePageLoaded() is triggered
when a user clicks an article page. It then gets information
about the user and the article (lines 1 and 2). If not logged in,
it redirects to a login page (line 5). If logged in, it checks the
account type and then shows the contents for premium users
(lines 7 and 8). For a non-paid user, it shows the content with
paywall information if the user’s free view count is not used
up (lines 10∼12); otherwise, it shows the paywall (line 14).

Assume that onArticlePageLoaded() is a call divergence
point that has two branches caused by the call state-
ments showContent() from the passing run at line 8 and
showPaywall() from the blocking run at line 14. For the call
divergence from the passing run, the call statement at line 8
is dependent on the statements at lines 7 and 4. Therefore, the
generated test input that can trigger the call in any circum-
stances is (4:false,7:true). On the other hand, in order to
bypass the call statement at line 14 (which is dependent on the
statements at lines 10, 7, and 4), we generate four test inputs:
(4:true), (7:true), (10:true), and (14:skip).

D. Testing Business Flow Tampering (BFT)

We perform BFT testing to find whether executions with
mutations can lead to a passing run. For each test input, our
system runs the web application by following the automated
browsing procedures described in Table II. We then apply the
mutation actions at the mutation point by intercepting the in-
terpretation process and adjust the bytecode generated via the
modified V8 engine. For instance, to apply the skip mutation
action, we disable the bytecode generation for a target function
call statements in ‘BytecodeGenerator::VisitCall’. For the
conditional statements and expressions, we simply copy the
same bytecode of the desired block to every branch outcome
instead of changing the outcome itself. We record a snapshot

(a screenshot and HTML/DOM data) of each test page for
verification.

E. Test Result Verification

Once each test is completed, we examine the snapshots
recorded in the dynamic execution trace collection and the
BFT testing steps to verify the detected tempering flaws.

Crash Detection. Since our system forcibly mutates original
execution flows, it may corrupt the execution context causing
unexpected crashes, such as accessing undefined objects, or
calling function without proper arguments. We discard snap-
shots collected from crashed executions because the results
might not be valid (and may mislead the classifier training pro-
cess as well). We examine the amount of successfully rendered
information to detect a crashed execution. Compared to the
non-crashed execution (i.e., execution from the trace collection
step in Section III-A4), if an execution renders substantially
less information, we consider them as crashed. Intuitively, a
crashed execution tends to terminate the execution before it
renders all the elements. To estimate the amount of visually
rendered elements, we take a screenshot of the webpage and
leverage Shannon’s entropy [42] that measures the level of
complexity. For the HTML/DOM data, we utilize their content
sizes. We combine those two metrics and compare them with
average values from the original executions snapshots from
passing and blocking runs. If it contains less than 40% of the
non-crashing runs, we consider it crashed.

Test Result Classification. Intuitively, if a test result’s snap-
shot (i.e., a screenshot and HTML/DOM) is similar to the
snapshots of the passing runs, the mutated execution may
indicate the existence of a flaw. Hence, we utilize similarity
scores between the snapshots, and use them as a metric for
a machine learning technique. We first extract common data
available for each set of snapshots collected from the passing
and the blocking runs, and these two data sets are used to
check similarities. To be specific, we gather common pixels
between the screenshots, then calculate the structural similarity
index measures [48]. For HTML/DOM data, we compare the
existence of DOM elements. This method using the common
data is beneficial for computing structural similarities not
disrupted by various contents inside. By doing this process,
we can get a total of 4 similarity scores, 2 scores (screenshot
and HTML/DOM data) from the passing and blocking runs
each, and they are used as features of a classifier. We employ
Balanced Random Forest (BRF) as a classification algorithm.
Note that our training dataset is easy to be biased since the
number of results containing flaws is much less than the not-
flawed ones. We use the BRF classifier because it is designed
to be robust for imbalanced dataset as it is less inclined to
over-fitting. As a training dataset, we utilize flawed websites
presented in the recent work [32]. We train the classifier with
a total of 1,778 snapshots collected from 13 websites using
the subscription and advertising business models.

IV. EVALUATION

Implementation. BFTDETECTOR [3] is written in Python
and JS (Node.js). We use Chromium (91.0.4460) compiled
with modified V8 JS engine (9.1.203). All experiments are
performed on a machine with an Intel Core i9 3.60 GHz CPU
and 16 GB RAM running Ubuntu 20.04 LTS.
Website Selection. For evaluation, we collect websites pro-
viding digital content services from various resources, such
as Google News, Yahoo News, or Alexa Top 500, then select
websites: 1) using one of the 3 promotional methods of the
business models, 2) eligible for automated browsing, and 3)
providing passing and blocking runs.

We classify the collected websites by the promotional meth-
ods. For the paywall methods, we first find websites having
membership/subscription payment pages. If some paid content
is accessible, it indicates the website uses a soft paywall
method; otherwise, it is a hard paywall. For the anti-adblocker
method, we utilize an adblocker browser extension, and if
we observe content differences (except for advertisements)
between websites with and without the adblocker extension,
we classify it as anti-adblocker. If a website uses multiple
promotional methods, we obtain each case per the methods.
To this end, we selected 449 cases in 352 websites.
Research Questions. We evaluate BFTDETECTOR to answer
the following five research questions:
• RQ1. How effective is our system in detecting BFT flaws?
• RQ2. How efficient is our system in reducing search space?
• RQ3. How effective is our test result verification method?
• RQ4. What is the performance overhead of our technique?
• RQ5. How is our system compared to other approaches?

A. BFT Detection Results

Table III shows the result and statistics of the BFT detection.
The first column shows the promotional methods. The numbers
of websites for each method are in the second column, and
the third column represents the number of flaws identified.

TABLE III: BFT Detection Result and Statistics

Promotional # # # Funcs # # Divg.1 Ratio
Method Sites Flaws (A) Calls (B) (B/A)

Hard Paywall 45 31 13,245 1,408,472 93 0.70%

Soft Paywall 127 67 10,313 899,207 258 2.50%

Anti-adblocker 277 217 12,885 1,396,466 19 0.15%

Total 449 315 Avg. 12,148 1,234,715 123 1.02%
1: Divergences.

Discovered BFT Cases. BFTDETECTOR identified 315 flaws.
Specifically, a total of 31 websites with hard paywalls and 67
with soft paywall methods were found to be flawed, and this
includes popular websites, such as TIME [13], Fortune [7],
Automotive News [2], Forbes [6], and Bookmate [4]. Further-
more, we found flaws of the anti-adblocker methods from 217
websites. We manually verified the 315 flaws by following
each website’s business flow. For instance, for soft-paywall
websites, we check if we can view articles more than the
number of free access with the mutation. All flaws we found

are deterministically and reliably exploitable. Details of the
discovered cases including demo videos can be found on our
website2.

TABLE IV: 6 Websites with No Flaws Detected
Promotional Method Website Investigation Result

Hard Paywall
New Scientist Server-side logic

AZ Central Multiple alteration needed

Soft Paywall
Journal & Courier Server-side logic

Orlando Sentinel Dynamic execution

Anti-
adblocker

Daily Herald Unable to analyze (Large codebase)

NY Daily News Multiple alteration needed

We reviewed the websites that our system was unable to
find any BFT flaws. Since manual and thorough investigation
is required, we selected 2 cases for each promotional method,
a total of 6 websites as in Table IV. New Scientist and Journal
& Courier does not have the BFT flaws since their business
processes are operated in the server-side. On the other hand,
we discovered that it was necessary to alter multiple locations
simultaneously to bypass the hard paywall of AZ Central
and the anti-adblocker of NY Daily News. From the Orlando
Sentinel case, we find that a few similar functions containing
the same business process were being executed randomly. This
protection technique, known as cloning, creates clones of basic
blocks or functions that can be executed interchangeably by
selecting one of them dynamically. Lastly, we failed to identify
potential flaws in Daily Herald, due to, in part, the large and
complex codebase (e.g., 7,175 functions).
Findings. The detection result shows that our approach is
effective in finding BFT flaws; BFTDETECTOR revealed 315
BFT flaws from real-world 449 cases.

B. Efficiency in Reducing Search Space
BFTDETECTOR can pinpoint potential flawed locations

from a large amount of functions. In order to show the
efficiency in reducing search space, we collect the number
of functions interpreted in a single run, and calls triggering
them. We repeat the test 10 times for each web application,
then calculate the average values. The fourth and fifth columns
in Table III show the result of the test. The result indicates
that there are 12,148 functions on average in a single run, and
they trigger about 100 times higher number of calls. Since
our system gathers call signatures from 6 runs (3 runs each
passing and blocking sides), the average number of calls our
system needs to handle would be about 6 millions. By using
the huge number of call signatures, our system extracts call
divergence by performing the call trace differential analysis
we discussed in Section III-B. The sixth column represents
the number of the call divergence our system discovers after
the differential analysis, and there are only 123 divergences
left after the analysis on average.
Findings. Our evaluation result shows that our approach
reduces the search space efficiently (1.02% of the original
number of function).

2https://sites.google.com/view/bftcases

TABLE V: Test Result Verification
Actual

Flawed Not Flawed

Predicted
Flawed TP = 1,645 (98.56%) FP = 197 (0.49%)

Not Flawed FN = 24 (1.44%) TN = 39,417 (99.51%)

C. Effectiveness of Test Result Verification

In the course of performing our BFT testing on the 449
websites, a total of 42,128 snapshots were generated. As we
discussed in Section III-E, BFTDETECTOR first checks if a
test result is from a crashed execution. As a result of the
crash detection, our system successfully filtered out 845 error
snapshots. Furthermore, our test result classification process
classified 1,842 of the remaining 41,283 test results as flawed.
Specifically, we manually validate all the test cases and the
classification results. If the prediction from our system is
flawed, we revisit the website with the mutated execution and
then check whether our system successfully tampers with the
business flow. If it succeed, we consider the classification
result is valid (true positive); otherwise, the prediction is
incorrect (false positive). On the other hand, if the prediction is
not flawed, we first compare the screenshots of the snapshots
from the test result and the blocking run. If they are identical,
the prediction is valid (true negative). Otherwise, we revisit
the website with the mutation. If the new mutation triggers
the BFT flaw, the prediction is not valid (false negative). If
not, the prediction is valid (true negative).

Table V shows the confusion matrix of the test result classi-
fication. Within the 41,283 snapshots, our approach correctly
classified 1,645 test results as flawed, while 39,417 are not
flawed. The result indicates that our classification method
using 4 similarity scores is effective with a false negative rate
of 1.44% (24 cases) and a false positive rate of 0.49% (197
cases). We investigated the 24 false negative cases, and found
that most of them are from the anti-adblocker method. For
instance, NWITimes [14] displays ads covering about 80% of
the screen when the main page is loaded. If their anti-adblocker
technique detects blocked ads, it shows a warning message.
One of our test inputs was able to mutate the execution to
prevent the warning message from appearing while the ads are
not displayed. However, the ad space is also removed, allowing
80% of the screen to be filled by remaining content or a blank.
The page is not similar to passing runs (webpages with ads)
since the ad contents in the mutated run do not exist. It is
also different from blocking runs (webpages without ads, but
with an adblocker warning) because the blocking run screen
is covered by the warning message.
Findings. The evaluation indicates that our verification
technique successfully classifies test results with low false-
positive (0.49%) and false-negative (1.44%) rates.

D. Performance Overhead

Throughout the detection process of our system, there are
two operations that can induce the overhead: 1) instrumenta-
tion, and 2) call trace collection. Our system instruments the

TABLE VI: Performance Overhead

Interpretation Call Trace Collection

Native Our
Approach

Built-in
Method

Optimized +
Blacklisting

Total 65.32 ms 65.76 ms Total 13.32 sec 6.54 sec

Per Function 6.46 µs 6.74 µs Per Call 10.74 ms 5.2 ms

TABLE VII: BFT Detection using JSFlowTamper
(a) Detection Results on 315
Flawed Websites

Business
Model ✓ é

Hard Paywall 8 23

Soft Paywall 17 50

Anti-adblocker 77 140

Total 102 213

(b) Reasons of Detection Failure

Reason of Failure # Cases

No DOM mutation event 63

No dynamic data collected 17

Random selector 84

No succeed tampering trial 49

✓: Flaws found, é: Flaws not found

tracking code by modifying the interpreter of the JS engine.
Also, when the tracking operation is triggered, it collects a call
signature containing the call stack. As Table III shows, there
are 1,234,715 function calls on average in a single run, which
indicates our system needs to retrieve the call trace data about
one million times for each run. To measure the performance
overhead, we record the elapsed time of the two operations for
10 times while our system performs the automated browsing,
then we calculate the average values. Table VI shows the
experiment results. The first two columns of the first row
represent the total execution time for a single run, and the
second row indicates the interpretation time per function. The
result shows that the code instrumentation only took 0.28µs
per function (6.74−6.46), and 0.44ms (65.76−65.32) in total.
Furthermore, the rest of the columns indicate the overhead
caused during the call trace collection. The third column shows
the results of using the built-in method of V8 JS engine
as a baseline, and the last column denotes the results after
deploying our optimized method along with the blacklisting
approach as described in Section III-A4.
Findings. The result (i.e., reduce the overhead by half)
shows that our optimizations are effective and BFTDETEC-
TOR can handle a heavy workload.

E. Comparison Study

We compare our technique with state-of-the-art technique
JSFlowTamper [32] on the 315 flawed websites our system
discovered. Note that we compare the source code of JSFlow-
Tamper and BFTDETECTOR to confirm that JSFlowTamper
implements a subset of BFTDETECTOR’s methods. It means
that JSFlowTamper can only find the same or fewer flaws
than the flaws BFTDETECTOR detects. To this end, we focus
on how many flaws JSFlowTamper can detect from the 315
flaws found by BFTDETECTOR. Since JSFlowTamper does not
provide automatic method, we manually prepared 315 sets of
inputs including: 1) Puppeteer JS code performing automated
browsing, and 2) DOM object selectors related to business
process. We also manually reviewed the test results to verify
the flaws, although it provides test result grouping to minimize
human effort.

We determine the reasons for detection failure for JSFlow-
Tamper as follows: 1) No DOM mutation event and No
dynamic data collected: They are directly from JSFlowTam-
per’s error messages, 2) Random selector: we observed that
JSFlowTamper failed to identify prepared DOM selectors as
the server-side code randomizes the selectors, 3) No succeed
tampering trial: JSFlowTamper finishes without errors but no
BFT flaws are found. This happens because the business
model’s core implementation is not related to DOM selectors
(e.g., using predicates) or the core logic is executed without
function calls which JSFlowTamper cannot handle. Table VII
shows the BFT detection result. As shown in Table VIIa,
JSFlowTamper was able to find the flaws only in 102 web-
sites. Additionally, we examined 213 unsuccessful cases to
determine the reason they failed, and each of them was caused
by one of four reasons in Table VIIb. The first one was
caused when there was no DOM mutation events related to
business process as in the StudentShare example (Figure 2b).
Secondly, we also found that the system failed to collect
dynamic data in 17 cases. The third reason was due to the
random selector. Since JSFlowTamper utilizes DOM selectors
to catch DOM mutation events, it cannot perform the detection
if a targeted web application is equipped with randomization
techniques, such as in [47]. Lastly, there were 49 cases where
JSFlowTamper could not find flaws even after testing every
trial. This indicates that the system was unable to locate
functions that need to be tampered with.
Findings. JSFlowTamper can only find 32.38% (102 out of
315) of the flaws that BFTDetector can find.

F. Case Study

1: function(){
2: …
3: var wallType =

dataElement.getAttribute('data-wall_type');
4: if (wallType) {
5: if (wallType === 'none') {
6: body.classList.add('allow-scroll');
7: } else if (wallType ===

'registration-wall') {
8: showRegistrationWall();
9: } else if …
10: …

article.js

2

loadComponents

anonymous

1

P B

D

meter-wall-client.js

JS

JS

P

B

Fig. 6: Business Process of Time.com

1) TIME.com: TIME [13] is a popular news magazine
website employing a soft paywall for the subscription business
model. It allows users to access 2 articles for free; after that,
it shows a subscription message blocking the article page. To
start test, we gathered 3 free pages; 2 for Ppaywall to trigger
the paywall and 1 for Pfree . Our system collected 129,774
call signatures on average for each run, and it extracted
156 divergence points in total. We observe 11,403 functions
and 635,445 calls on average in a single run, showing that
our approach efficiently reduced the search space. From the
divergence points, we generated 124 test inputs and, after
trials, found 1 input that allows us to access more than 2
articles without a subscription. Figure 6 shows the flaw. When

an article page is loaded, loadComponents() in ‘article.js’
injects ‘meter-wall-client.js’ dynamically. After a series of
calls, the logic inside the anonymous function (function())
determines whether to allow access for the article by allowing
scroll (P) or to show a registration message (B). Our system
successfully identified the divergence point (D), and found the
test input that changes the blocking flow by forcibly taking the
then branches of the two if statements (1 and 2).

1: function(){
2: var t = o.props
3: , r = t.maximumAllowedProgress
4: , n = t.onChapterClick
5: , c = t.showPaywall;
6: e.percent <= r ? n(e.src) : c()
7: }

bundle.f7cfa.js

d

anonymous

1
P B

D
9.chunk.d05ec.js

JS

JS

P B

Mouse click event

Fig. 7: Business Process of Bookmate.com

2) Bookmate.com: Bookmate [4] is a social ebook sub-
scription service, has 3 million readers and a catalog of
over 500,000 books. They employ the subscription business
model with the hard paywall method. The first one or two
chapters of books are free to access, but users need to
subscribe to a premium plan for $8 per month to read more.
In order to trigger the subscription paywall, a series of mouse
click events is required instead of just visiting a page. We
recorded 2 Puppeteer scripts (JSfree and JSsub) containing
the browsing actions using Chrome DevTool, then fed them
into our tool for replay. During the dynamic execution trace
collection, our system collected 6,071 functions and 50,506
call signatures. After analyzing the collections, 7 test inputs
from 2 divergence points are generated. To this end, we found
1 input that can unlock the chapter limitation. Figure 7 shows
the divergence point and call stacks of the test input. When
a user clicks a chapter, the triggered mouse click event is
handled by the function d(). Then, it calls the anonymous
function (i.e., function()) in the different script, which is
a divergence point containing both paths to passing and
blocking runs. The function gathers data, and checks if the
clicked chapter (‘e.percent’) exceeds the maximum number
of free chapters (‘r’) in line 6. If the clicked chapter is
within the ‘maximumAllowedProgress’, it shows the chapter
(P); otherwise, the paywall is displayed (B). The test input
our system found forcibly executes the true branch of the
conditional expression (1).

V. MITIGATION: SERVER SIDE CODE RANDOMIZATION

As we discussed in Section II-B, migrating every important
business logic to the server-side to solve the business flow
tampering flaws is not only impractical but also causing
substantial overhead on the server side, leading to a high main-
tenance cost. Hence, in this section, we present, implement,
and evaluate a practical solution (that does not cause high
costs and substantial disruption in the existing service), which
is a server-side code randomization. It generates new JS code

each time a request is received from the client. Note that code
randomization techniques are normally expensive. Hence, our
solution is to leverage BFTDETECTOR to identify the flawed
logic, and apply the randomization on the identified code only.
Implementation. We implemented a proof of concept method
to demonstrate the effectiveness of the mitigation approach.
Specifically, we configure a proxy server imitating Google
Funding Choice providing anti-adblocker service as in the
LA Times case (Figure 2a). It intercepts requests from web
browsers, then returns a JS file by applying the code ran-
domization to the flawed function (Hf()) that our system
discovered. To implement random code generation, we use
an open-sourced JS obfuscator [9], which includes various
anti-analysis technique (e.g. control flow flattening and string
encryption). We test the mitigation approach on LA Times.
Result against BFTDETECTOR. BFTDETECTOR failed on
the mitigation setup; it was unable to identify any divergences.
This is because BFTDETECTOR locates statements and func-
tions using file offsets, that are randomized by the proposed
mitigation. Also, BFTDETECTOR analyzes branches to infer
the business models, where our mitigation approach eliminates
branches via the control flow flattening technique.
Result against Manual Analysis. The server-side code ran-
domization also make manual analysis difficult. JS debuggers
cannot set breaking points or track variables since locations
of code and variables are constantly changing.
Efficiency. One concern of the mitigation approach can be a
performance since JS code obfuscation techniques normally
incur lots of computational and memory overhead. For exam-
ple, the control flow flattening slows down the performance up
to 1.5x [30], and the dead code injection increases the code
size up to 200% [31]. To compare the performance overhead,
we record the total time of the obfuscation operations applied
only to the flawed function and to the entire code. As in
Table VIII, our mitigation approach increase only 287 bytes
and 8.15 ms, which we believe reasonable.

TABLE VIII: Performance Overhead of Mitigation Approach

Vul. Func. Only Entire Code

File
Size

Before 184 B 64,316 B

After 471 B 134,510 B

Time Overhead 8.15 ms 623.07 ms

Limitations. It is not immune to a code-reuse attack. Although
we generate random code for every request, that does not mean
that previously generated codes are invalid. Furthermore, if a
flawed function contains only a few statements (e.g., a single
call statement), the code randomization may not be effective.

VI. DISCUSSION

Ethical Considerations. The findings of this study are strictly
for research purposes. Our disclosures do not include detailed
information that could be used to reproduce the tampering. We
have reported the flaws to all digital content providers, and we
are actively in contact with them for potential mitigations.

Limitations. While our system is highly effective, it is also
not free of limitations. First, BFTDETECTOR performs the
BFT testing using one input at a time. If multiple divergence
points need to be mutated together (as shown in Table IV),
our approach would fail to detect the flaws. Second, we use
a file offset as an identification of JS objects (e.g. functions,
or statements). BFTDETECTOR may fail to locate JS objects
embedded in HTML because the offset varies based on its
contents. Although we have not yet observed the cases in
which important business logic is implemented in embedded in
HTML, our differential analysis may miss divergence points in
such cases. Third, while our test result verification shows low
false-positive/negative rates, the 1,778 training dataset from 13
websites may not represent all possible cases.
Handling Soft-paywall Websites. In Section IV-A, we ob-
serve that BFTDETECTOR detects fewer flaws in soft paywall
websites. To understand the reason behind this, we inspected
the 60 soft-paywall websites that BFTDETECTOR could not
find flaws and found the following 4 cases are observed fre-
quently. (1) 14 websites require multiple execution mutations
(the paywall is implemented across multiple files), which
we do not support. (2) 7 websites are high-ranked Alexa
websites. They use a protection technique called cloning. (3)
4 websites randomly decide the free-access policy (e.g., # of
free-access pages), while we assume a deterministic policy. (4)
2 websites implement the business logic on the server side.
For the remaining 33 websites, we found neither a flaw nor
BFTDetector’s limitations on them (probably not vulnerable).

VII. RELATED WORK

Testing-based Web Application Flaw Detection. Our work is
closely related to automated web application testing for flaw
detection. Black-box testing is widely used to generate test
cases and check applications for vulnerabilities [17], [18], [20],
[23], [24], [40], [43], [44]. Testers analyze the system and cre-
ate test cases to check if the test cases expose flaws. Previous
work has employed black-box testing on web applications for
various purposes, including detection of side-channel vulnera-
bilities [20], testing for checkout system flaws [40], feedback-
directed automated test generation [16]. Their common goal
is to improve the coverage of the execution space to discover
buggy, abnormal or malicious behavior. Nonetheless, they are
not suitable for detecting BFT flaws, which need to precisely
pinpoint business logic related functions.

JSFlowTamper [32] is the state-of-the-art detection tech-
nique for BFT flaws. Unlike JSFlowTamper that only fo-
cuses on testing DOM selectors, BFTDETECTOR defines
and leverages business models. The business models help
discover new BFT flaws related to predicates and function
calls, beyond DOMs. Also, BFTDETECTOR proposes the
differential analysis-based algorithm to automatically identify
divergence points, while JSFlowTamper requires manual effort
and domain expertise to identify DOM selectors. Furthermore,
BFTDETECTOR automates the end-to-end process, while JS-
FlowTamper focuses on manual dynamic testing. Lastly, BFT-
DETECTOR solved JSFlowTamper’s limitations: (1) handling

randomized DOM selectors, (2) handling websites without
DOM mutation events (e.g., Figure 2b), (3) detecting flaws
related to multiple JS files in the call chain (e.g., Figure 2a).
JS Analysis Techniques. There are a variety of techniques
analyzing JS code [16], [19], [21], [25]–[28], [33]–[36], [38],
[39], [41], [45], [46], [49]. Jalangi [41] provides a dynamic
analysis framework by instrumenting JS code. Rozzle [34] is
a virtual machine that performs multi-path execution experi-
ments in parallel to enhance the efficiency of dynamic analysis.
J-Force [33] uncovers hidden malicious behaviors by forcibly
exploring all possible execution paths. Dual-Force [45] is
a technique that forcibly executes both Java and JavaScript
code of WebView applications simultaneously to reveal hidden
payloads of malware. JSGraph [35] records fine-grained details
about how JS programs are executed and how their effects are
reflected in DOM elements within a browser. JStap [25] is a
static malicious JavaScript detector that enhances the detection
capability of existing lexical and AST-based pipelines.

VIII. CONCLUSION

We present an automated approach to detect the BFT
flaws on digital content service websites. Our novel business
model based approach automatically exercises different busi-
ness flows and identifies the flaws via our differential analysis
algorithm. Our evaluation result shows that our approach is
highly effective, discovering 315 flaws from 204 high-profile
websites such as TIME, Fortune, and Forbes.

ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive
feedback. The authors gratefully acknowledge the support of
NSF 1908021, 1916499, 2047980, and 2145616. This research
was also partially supported by a gift from Cisco Systems.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsor.

REFERENCES

[1] “Chrome devtools recorder: Record, replay and measure user flows,”
https://developer.chrome.com/docs/devtools/recorder/, 2021.

[2] “Automotive news,” https://www.autonews.com/, 2022.
[3] “Bftdetector git repository,” https://github.com/jspaper22/bftdetector,

2022.
[4] “Bookmate,” https://bookmate.com/, 2022.
[5] “Bypass paywalls,” https://github.com/iamadamdev/bypass-paywalls-

chrome, 2022.
[6] “Forbes,” https://www.forbes.com/, 2022.
[7] “Fortune,” https://fortune.com/, 2022.
[8] “Google’s funding choices,” https://fundingchoices.google.com/, 2022.
[9] “Javascript obfuscator tool,” https://obfuscator.io/, 2022.

[10] “Los angeles times,” https://www.latimes.com/, 2022.
[11] “Puppeteer,” https://developers.google.com/web/tools/puppeteer, 2022.
[12] “Student share,” https://studentshare.org/, 2022.
[13] “Time,” https://time.com/, 2022.
[14] “The times of northwest indiana,” https://www.nwitimes.com/, 2022.
[15] “V8 javascript engine,” https://v8.dev/, 2022.
[16] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip, “A framework for

automated testing of javascript web applications,” in Proceedings of the
33rd International Conference on Software Engineering. ACM, 2011,
pp. 571–580.

[17] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:
Automated black-box web application vulnerability testing,” in 2010
IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 332–345.

[18] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. Venkatakrish-
nan, “Notamper: automatic blackbox detection of parameter tampering
opportunities in web applications,” in Proceedings of the 17th ACM
conference on Computer and communications security. ACM, 2010,
pp. 607–618.

[19] Y. Cao, Z. Li, V. Rastogi, Y. Chen, and X. Wen, “Virtual browser:
a virtualized browser to sandbox third-party javascripts with enhanced
security,” in 7th ACM Symposium on Information, Compuer and
Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012,
H. Y. Youm and Y. Won, Eds. ACM, 2012, pp. 8–9. [Online].
Available: https://doi.org/10.1145/2414456.2414460

[20] P. Chapman and D. Evans, “Automated black-box detection of side-
channel vulnerabilities in web applications,” in Proceedings of the 18th
ACM conference on Computer and communications security. ACM,
2011, pp. 263–274.

[21] Z. Chen and Y. Cao, “Jskernel: Fortifying javascript against
web concurrency attacks via a kernel-like structure,” in 50th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2020, Valencia, Spain, June 29 - July
2, 2020. IEEE, 2020, pp. 64–75. [Online]. Available: https:
//doi.org/10.1109/DSN48063.2020.00026

[22] D. Coldewey, “Thousands of major sites are taking silent anti-ad-
blocking measures,” https://techcrunch.com/2017/12/27/thousands-of-
major-sites-are-taking-silent-anti-ad-blocking-measures/, December
2017.

[23] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of
the state: A state-aware black-box web vulnerability scanner,” in
Proceedings of the 21th USENIX Security Symposium, Bellevue, WA,
USA, August 8-10, 2012, T. Kohno, Ed. USENIX Association, 2012,
pp. 523–538. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/doupe

[24] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, 7th International
Conference, DIMVA 2010, Bonn, Germany, July 8-9, 2010. Proceedings,
ser. Lecture Notes in Computer Science, C. Kreibich and M. Jahnke,
Eds., vol. 6201. Springer, 2010, pp. 111–131. [Online]. Available:
https://doi.org/10.1007/978-3-642-14215-4 7

[25] A. Fass, M. Backes, and B. Stock, “Jstap: a static pre-filter for
malicious javascript detection,” in Proceedings of the 35th Annual
Computer Security Applications Conference, ACSAC 2019, San Juan,
PR, USA, December 09-13, 2019, D. Balenson, Ed. ACM, 2019, pp.
257–269. [Online]. Available: https://doi.org/10.1145/3359789.3359813

[26] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, “Jast: Fully syntactic
detection of malicious (obfuscated) javascript,” in Detection of Intrusions
and Malware, and Vulnerability Assessment - 15th International
Conference, DIMVA 2018, Saclay, France, June 28-29, 2018,
Proceedings, ser. Lecture Notes in Computer Science, C. Giuffrida,
S. Bardin, and G. Blanc, Eds., vol. 10885. Springer, 2018, pp. 303–325.
[Online]. Available: https://doi.org/10.1007/978-3-319-93411-2 14

[27] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in javascript,” in Proceedings of the 2016 24th ACM SIGSOFT
international symposium on foundations of software engineering, 2016,
pp. 144–156.

[28] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking
information flow in javascript and its apis,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, 2014, pp. 1663–1671.

[29] insightSLICE, “Digital content creation market - global
market share, trends, analysis and forecasts, 2020 - 2030,”
https://www.insightslice.com/digital-content-creation-market, November
2020.

[30] T. Kachalov, “Javascript obfuscator - controlflowflat-
tening,” https://github.com/javascript-obfuscator/javascript-
obfuscator#controlflowflattening, 2022.

[31] ——, “Javascript obfuscator - dead code injec-
tion,” https://github.com/javascript-obfuscator/javascript-
obfuscator#deadcodeinjection, 2022.

[32] I. L. Kim, Y. Zheng, H. Park, W. Wang, W. You, Y. Aafer, and
X. Zhang, “Finding client-side business flow tampering vulnerabilities,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:

Association for Computing Machinery, 2020, p. 222–233. [Online].
Available: https://doi.org/10.1145/3377811.3380355

[33] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, and
D. Xu, “J-force: Forced execution on javascript,” in Proceedings of the
26th international conference on World Wide Web, 2017, pp. 897–906.

[34] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, “Rozzle: De-cloaking
internet malware,” in 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 443–457.

[35] B. Li, P. Vadrevu, K. H. Lee, R. Perdisci, J. Liu, B. Rahbarinia, K. Li,
and M. Antonakakis, “Jsgraph: Enabling reconstruction of web attacks
via efficient tracking of live in-browser javascript executions,” in NDSS,
2018.

[36] G. Li, E. Andreasen, and I. Ghosh, “Symjs: automatic symbolic testing
of javascript web applications,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 449–459.

[37] N. Newman, “Journalism, media and technology trends and predictions
2019,” https://www.digitalnewsreport.org/publications/2019/journalism-
media-technology-trends-predictions-2019/, January 2019.

[38] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you
include: Large-scale evaluation of remote javascript inclusions,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 736–747. [Online].
Available: https://doi.org/10.1145/2382196.2382274

[39] F. S. Ocariza Jr, G. Li, K. Pattabiraman, and A. Mesbah, “Automatic
fault localization for client-side javascript,” Software Testing, Verification
and Reliability, vol. 26, no. 1, pp. 69–88, 2016.

[40] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic
flaws in web applications.” in NDSS, 2014.

[41] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[42] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE mobile computing and communications review, vol. 5,
no. 1, pp. 3–55, 2001.

[43] N. Skrupsky, P. Bisht, T. Hinrichs, V. Venkatakrishnan, and L. Zuck,
“Tamperproof: a server-agnostic defense for parameter tampering attacks
on web applications,” in Proceedings of the third ACM conference on
Data and application security and privacy. ACM, 2013, pp. 129–140.

[44] A. Sudhodanan, A. Armando, R. Carbone, L. Compagna et al., “Attack
patterns for black-box security testing of multi-party web applications.”
in NDSS, 2016.

[45] Z. Tang, J. Zhai, M. Pan, Y. Aafer, S. Ma, X. Zhang, and J. Zhao, “Dual-
force: Understanding webview malware via cross-language forced exe-
cution,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 714–725.

[46] J. Wang, W. Dou, C. Gao, Y. Gao, and J. Wei, “Context-based event
trace reduction in client-side javascript applications,” in 2018 IEEE
11th International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2018, pp. 127–138.

[47] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster,
“Webranz: web page randomization for better advertisement delivery and
web-bot prevention,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 205–216.

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[49] M. Zhang and W. Meng, “Detecting and understanding javascript global
identifier conflicts on the web,” ser. ESEC/FSE 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 38–49. [Online].
Available: https://doi.org/10.1145/3368089.3409747

https://doi.org/10.1145/2414456.2414460
https://doi.org/10.1109/DSN48063.2020.00026
https://doi.org/10.1109/DSN48063.2020.00026
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.1145/3359789.3359813
https://doi.org/10.1007/978-3-319-93411-2_14
https://doi.org/10.1145/3377811.3380355
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1145/3368089.3409747

	Introduction
	Motivation
	Business Flow Tampering Flaws
	Business Model vs. Implementation
	BFTdetector: Automated Tampering Detection

	System Design
	Dynamic Execution Trace Collection
	Business Model Driven Trace Collection
	Definition of Passing and Blocking Runs
	Automated Business Flow Execution Driver
	Call Trace Collection

	Call Trace Differential Analysis
	Test Input Generation
	Testing Business Flow Tampering (BFT)
	Test Result Verification

	Evaluation
	BFT Detection Results
	Efficiency in Reducing Search Space
	Effectiveness of Test Result Verification
	Performance Overhead
	Comparison Study
	Case Study
	TIME.com
	Bookmate.com

	Mitigation: Server side Code Randomization
	Discussion
	Related Work
	Conclusion
	References

