
An Empirical Analysis of UI-based Flaky Tests
Alan Romano1, Zihe Song2, Sampath Grandhi2, Wei Yang2, and Weihang Wang1

1University at Buffalo, SUNY 2University of Texas at Dallas

Abstract—Flaky tests have gained attention from the research
community in recent years and with good reason. These tests lead
to wasted time and resources, and they reduce the reliability of
the test suites and build systems they affect. However, most of the
existing work on flaky tests focus exclusively on traditional unit
tests. This work ignores UI tests that have larger input spaces
and more diverse running conditions than traditional unit tests.
In addition, UI tests tend to be more complex and resource-
heavy, making them unsuited for detection techniques involving
rerunning test suites multiple times.

In this paper, we perform a study on flaky UI tests. We analyze
235 flaky UI test samples found in 62 projects from both web and
Android environments. We identify the common underlying root
causes of flakiness in the UI tests, the strategies used to manifest
the flaky behavior, and the fixing strategies used to remedy flaky
UI tests. The findings made in this work can provide a foundation
for the development of detection and prevention techniques for
flakiness arising in UI tests.

I. INTRODUCTION

Software testing is a significant part of software devel-
opment. Most developers write test suites to repeatedly test
various indicators of functioning software. If a test fails,
developers will analyze the corresponding test to debug and fix
the software. However, not all testing results are fully reliable.
Sometimes the test may show flakiness, and a test showing this
behavior is denoted as a flaky test.

Flaky tests refer to tests with unstable test results. That is,
the same test suite sometimes passes and sometimes fails under
the exact same software code and testing code. The existence
of flaky tests destroys the deterministic relationship between
test results and code quality. Once a flaky test appears, it may
lead to tons of efforts wasted in debugging the failed test,
which leads to delays in software release cycle and reduced
developer productivity [1].

In the past few years, researchers have increased efforts
to address this problem [2, 3, 4]. However, the existing
research on flaky tests mostly focuses on unit tests. Compared
with traditional unit testing, the execution environment and
automation process of UI testing are significantly different:
First, many of the events in these tests, such as handling user
input, making operating system (or browser) API calls, and
downloading and rendering multiple resources (such as images
and scripts) required by the interface, are highly asynchronous
in nature. This means that user events and various other tasks
will be triggered in a non-deterministic order.

Second, compared to traditional unit testing, flaky UI tests
are more difficult to detect and reproduce. This is because it
is difficult to cover all use-case scenarios by simulating user
events to automate UI testing. UI tests introduce new sources
of flakiness, either from the layer between the user and the

UI or the layer between the UI and the test/application code.
Moreover, the execution speed of the UI test in continuous
integration environments is slow, and this difference in execu-
tion speed makes detecting and reproducing flaky tests more
difficult. Therefore, researching flaky UI tests can help web
and mobile UI developers by providing insights on effective
detection and prevention methods.

To further investigate flaky UI tests, we collect and analyze
235 real-world flaky UI test examples found in popular web
and Android mobile projects. For each flaky test example, we
inspect commit descriptions, issue reports, reported causes,
and changed code. We focus on the following questions and
summarize our findings and implications in Table I.

RQ1: What are the typical root causes behind flaky
UI tests? We examine the collected flaky UI test samples to
determine the underlying causes of flaky behavior. We group
similar root causes together into 4 main categories: Async Wait,
Environment, Test Runner API Issues, and Test Script Logic
Issues.

RQ2: What conditions do flaky UI tests manifest in
and how are they reproduced? In order to understand how
users report intermittent behaviors, we investigate the common
strategies used to manifest the flaky UI test samples. The data
reveals 5 strategies used to reproduce and report flaky UI
test behavior: Specify Problematic Platform, Reorder/Prune
Test Suite, Reset Configuration Between Tests, Provide Code
Snippet, and Force Environment Conditions.

RQ3: How are these flaky UI tests typically fixed? We
identify the bug fix applied to each collected flaky UI test
sample and group similar ones together. We find 4 main cate-
gories for bug fixing strategies: Delay, Dependency, Refactor
Test, and Disable Features.

We investigate the impacts that these UI-specific features
have on flakiness, and we find several distinctions. Based
on the investigation of above research questions, the main
contributions of this study are:

1) Our study provides guidance for developers to create
reliable and stable UI test suites, which can reduce the
occurrence of flaky UI tests.

2) Our study summarizes the commonly-used manifestation
and fix strategies of flaky UI tests to help developers
easily reproduce and fix flaky tests, allowing them to
avoid wasted development resources.

3) Our study motivates future work for automated detection
and fixing techniques of UI-based flaky tests.

TABLE I: Summary of Findings and Implications

Findings Implications

1 Of the observed flaky tests collected, 105 tests of the 235 (45.1%)
dataset are caused by an Async Wait issue.

This group represents a significant portion of the dataset collected and highlights
the need to take this root cause into consideration when designing UI tests.

2 Async Wait issues are more prevalent in web projects rather than mobile
projects (W 52.0 % vs M 32.5%).

The web presents an environment with less stable timing and scheduling
compared with a mobile environment, so more care must be taken when
network or resource loads are used within web UI tests.

3 Platform issues are happening more frequent on mobile projects rather
than web projects (W 10.5 % vs M 21.7%).

It may be caused by Android fragmentation problem. So the Android
developers should pay more attention to the environment configuration
when choosing the test model.

4 Layout difference (cross-platform) root causes are found more in web
flaky test than in mobile flaky tests (W 5.3 % vs M 1.2%).

This difference can be explained by the number of additional platform conditions that
web applications can be exposed compared with the conditions found in
mobile environment, such as different window sizes, different browser
rendering strategies, etc...

5

Besides removing flaky test, the most common fixing strategies are
refactoring logic implementations (46.0%) and fixing delays (39.3%).
Among them, refactoring logic implementations can solve most issues
caused by wrong test script logic, and fixing delay strategy can solve
most timing issues.

Refactoring logic implementations and fixing delays should be the first-
considered strategies for developers when fixing bugs.

6 Dependency fixes are more common in mobile projects than web
projects (W 1.3% vs M 21.4%).

This trend can be caused by the Android fragmentation problem. Android developers
should pay more attention to this problem when designing test suites.

7 Delay fixes are more common in web projects than mobile projects
(W 32.2% vs M 17.9%).

This phenomenon is related to the most common test framework in Android
testing, Espresso, which recommends disabling animations during tests.

TABLE II: Summary of Commit Info from UI Frameworks

UI Topic Projects Commits Flaky Keyword
Filtering

UI Keyword
Filtering

web 999 772,901 2,553 210
angular 998 407,434 222 19
vue 998 344,526 52 1
react 997 1,110,993 603 30
svg 995 135,563 24 1
bootstrap 995 98,264 112 0
d3 980 106,160 82 1
emberjs 629 3,961 1 0
Total 7,590 2,979,802 3,649 262
Distinct 7,037 2,613,420 3,516 254

II. BACKGROUND

A. Impacts of Flaky UI Tests

1) Individual Test Failures: The simplest impact that flaky
test can have on test suites is that the individual test run will
fail. This flaky behavior leads to a minimal amount of time
and resources wasted by attempting to retry the single test.

2) Build Failures: Flaky tests that are part of continuous
integration systems can lead to intermittent build failures.
Flaky tests in this stage lead to wasted time trying to identify
the underlying cause of the build failure only to find out that
the failure was not caused by a regression in the code.

3) CI Test Timeouts: Some flaky behaviors do not cause
the tests to fail outright. Instead, they cause hangups in the CI
system that lead to timeouts. These hangups waste time as the
system waits for a process that never finishes, causing the CI
system to wait until a specified timeout is met.

III. METHODOLOGY

A. Sample Collection

1) Web: In order to collect samples of flaky UI tests, we
retrieve commit samples from GitHub repositories. First, we
obtain a list of the repositories leveraging popular web UI
frameworks using the topic keywords ‘react’, ‘angular’, ‘vue’,
‘emberjs’, ‘d3’, ‘svg’, ‘web’, and ’bootstrap’. These keywords

are used with the GitHub Search API [5] to identify 7,037
distinct repositories pertaining to these topics. From this set of
repositories, we download all of the commits for these projects
giving a total of 2,613,420 commits to search. Next, we follow
a procedure similar to the one used in Luo et al. [2] and search
the commit messages for the patterns ‘flak*’ and ‘intermit*’
and the word ‘test’ to find commits marked as flaky. This step
reduces the number of commits to 3,516. In order to confirm
which of these commits were flaky UI tests, manual inspection
was performed on the commits in the list. In order to expedite
the process, another keyword search is performed using the
keywords ‘ui’, ‘gui’, ‘visual’, ‘window’, ‘button’, ‘display’,
‘click’, and ’animation’ to prioritize the commits most likely to
refer to flaky UI tests. This final search prioritizes 254 commit
messages to search, but the full 3,516 are searched to increase
the chance of identifying flaky UI test commits. After manual
inspection and removing duplicate commits, the number of
verified flaky tests is 152. Table II shows the summary of
commit information.

2) Android: Compared with web development, Android
developers are not as consistent with their choice of UI frame-
work. Therefore, to find flaky UI tests on the Android platform,
we use the GitHub Archive [6] to perform a massive search on
all commits and issue reports on GitHub instead of focusing
on repositories using popular UI framework. Specifically, We
limit our search to the list of closed issues, since the flaky
tests in closed issues are more likely to be fixed than the
tests in open issues. We search with the keywords ‘flak*’,
‘intermit*’, and ‘test*’, which is similar to the patterns used
in web searching. In order to ensure the issues we find are flaky
UI tests on the Android platform, we also add constraints like
‘android’, ‘ui’, ‘espresso’, ‘screen’, etc.

B. Portion of Flaky UI Tests to Other Tests

We find that flaky UI tests collected in our methodology
make up a small portion of all tests available in these
repositories. This small portion can be explained by several

TABLE III: Top 10 Projects Containing the Most Flaky Tests

Project Inspected
Commits Flaky Tests LOC

Waterfox 937 23 3,949,098
qutebrowser 124 4 45,313
influxdb 81 12 124,591
angular 69 2 135,253
plotly.js 37 24 760,504
material-components-web 26 5 78,972
components 21 5 34,715
oppia 20 2 132,284
wix-style-react 15 11 19,830
streamlabs-obs 13 1 179,184
material-components-android 358 9 11,682
Focus-android 24 8 30,952
RxBinding 21 6 8,787
Xamarin.Forms 140 5 46,609
FirebaseUI-Android 34 4 4,386
Fenix 20 4 155,50
Detox 38 3 2,254
Components 14 3 34,715
Mapbox-navigation-android 4 2 6,201
Sunflower 3 1 354

reasons. Based on GH Archive [6], the number of open issues
(over 70,000) containing potential flaky UI tests outnumbers
those in closed issues (over 30,000). Open issues cannot
be included in our study; however, this large number of
open issues possibly containing flaky UI tests highlights the
significance of UI flakiness. Besides, there are flaky UI tests
not captured through the keywords. One example is in the
material-components-web repository [2]. While our
dataset is not exhaustive, we believe the results can provide a
basis for future work to build on.

C. Sample Inspection

After collecting these commits and issues of flaky tests re-
ports from GitHub, we manually inspect the collected samples
to identify the information relevant to our research questions.
In particular, we analyze the collected flaky tests by first
inspecting the commits in the web projects and the issue
reports in the Android projects for the following traits: the root
cause of the flakiness, how the flakiness is manifested, how the
flakiness was fixed, the test affected, the testing environment,
and the lines of code of the fix. For the commits, we inspect
the commit message, changed code, and linked issues. For
the issue reports, we inspect the developer comments and the
linked commits. When available, we also inspect the execution
logs from the CI. Table III shows the information of projects
containing flaky tests. Through inspection, we obtained the
sample set of 235 flaky tests, of which 152 were from web
repositories and 83 were from Android repositories.

D. Dataset Composition

Our dataset consists of a diverse set of flaky UI test
samples. The languages of the flaky UI tests analyzed are
JavaScript (63.8%), TypeScript (20.4%), HTML (8.6%), and
others (7.2%) for the web projects and Java (48.2%), Kotlin
(21.7%), and others (30.1%) for the Android projects.

IV. CAUSE OF FLAKINESS

We investigate the collected flaky tests to determine the root
cause of the flaky behavior. We manually inspect the related
commits and issues of the test in order to locate the code
or condition that caused the flakiness. We base our root cause
categories on those defined by Luo et al. [2]. We extend the set
of categories to include new categories specific to UI flakiness
(“Animation Timing Issue”, “DOM Selector Issue”, etc...). The
categorization results are summarized in Table IV.

TABLE IV: Summary of Root Cause Categories Found

Root Cause
Categories

Root Cause
Subcategories Web Mobile Total

Async Wait Network Resource Loading 15 4 19
Resource Rendering 47 14 61
Animation Timing Issue 17 9 26

Environment Platform Issue 16 18 34
Layout Difference 9 1 10

Test Runner DOM Selector Issue 13 3 16
API Issue Incorrect Test Runner Interaction 10 14 24
Test Script Unordered Collections 5 0 5
Logic Issue Time 1 0 1

Incorrect Resource Load Order 11 11 22
Test Order Dependency 6 6 12
Randomness 2 3 5
Total 152 83 235

A. Categorization

After manual inspection of the flaky UI tests, we identify
four categories that the root causes of flakiness in these tests
can fall under: (1) Timing Issue, (2) Platform Issue, (3) Test
Runner API Issue, and (4) Test Script Logic Issue. We describe
the categories and provide examples for each below.

1) Async Wait: We have found the root cause for a sig-
nificant portion (45%) of the flaky tests analyzed arise from
issues with async wait mechanisms. The common cause of
such issues is that the tests do not properly schedule fetching
and performing actions on program objects or UI elements,
causing issues with attempting to interact with elements that
have not been loaded completely. The program objects or UI
elements can come from network requests, the browser render-
ing pipeline, or graphics pipeline. This improper ordering of
events results in an invalid action and causes an exception to
be thrown. Among these async wait issues, we identified three
three subcategories that group similar root causes together.

a) Network Resource Loading: Flaky tests in this cat-
egory attempt to manipulate data or other resources before
they are fully loaded. Attempting to manipulate nonexistent
data causes exceptions in the test. An example is seen in
the ring-ui [7] web component library repository. This
library provides custom-branded reusable web components to
build a consistent theme across web pages. In this project,
some components being tested utilize images that are fetched
through network requests; however, depending on the network
conditions, the images may fail to load on time or fail to load
altogether. The code snippet in Figure 1 shows how the url
variable defined in Line 1 is URL for an image network call
to an external web server. The image is an avatar used by

the tag component on Line 8 to display on the page. When
the server call occasionally fails to respond in time due to a
heavy network load, the visual test will intermittently fail as
the rendered tag component will be missing the image.

1 const url =
`${hubConFigureserverUri}/api/rest/avatar/
default?username=Jet%20Brains`;

↪→

↪→

2
3 class TagDemo extends React.Component {
4 render() {
5 return (
6 <div>
7 <Tag>Simple</Tag>
8 <Tag avatar={url} readOnly={false}>
9 With avatar

10 </Tag>
11 </div>
12);
13 }}

Fig. 1: ring-ui Network Resource Loading Example.

Another example is found in the influxdb [8] project.
This project provides a client side platform meant for storing,
querying, and visualizing time series data. Figure 2 shows a
flaky test for the label UI components. The test checks that
labels update properly by first creating a new label and then
attempting to modify the label’s name and description through
the UI. Figure 2a presents the view of the test suite being run
on the left with the UI view on the right. Figure 2b shows
the code snippet of the test corresponding to the screenshot.
Lines 6-11 create the label to be used in the test. Lines 13-17
perform assertions on the labels retrieved through a network
call. However, due to the execution timing, the label is not
yet created in the backend store. The network call returns an
empty response which causes the assertion on Line 15 to fail.

b) Resource Rendering: Flaky tests in this category
attempt to perform an action on a UI component before it
is fully rendered. This attempt to interact with the missing
component leads to visual differences detected by screenshot
tests, or exceptions thrown by attempting to access elements
that have not fully loaded yet. An example of this is seen in the
generator-jhipster [9] project. This project provides a
platform to generate modern web application with Java. In this
project, a test script attempts to click on a button and wait for
the button to be displayed instead of the button being clickable.
Normally, these descriptions refer to the same event, but the
modal overlay shown in the UI can block the target button
from being clickable. The faulty code snippet is shown in
Figure 3. The waitUntilDisplayable function on Line
2 pauses the execution until the button is displayed on the
page. The test can fail intermittently if another element is still
above the button when Line 3 is reached, such as an element
acting as a background shade in a confirmation modal.

This issue also appeared on the Android test, in the Volley
[10] project, the code snippet in Figure 4 leads to flaky
behavior because of a short timeout. The listener occasionally

(a) The test for updating a label first creates a new label through
the UI. In this case, the backend had not finished processing the
new label, so the network call to fetch all labels returns an empty
response.
1 it('can update a label', () => {
2 ...
3 const newLabelName = 'attribut ()'
4 const newLabelDescription = "..."
5
6 // create label
7 cy.get<Organization>('@org').then(({id}) => {
8 cy.createLabel(oldLabelName, id, {
9 description: oldLabelDescription,

10 })
11 })
12
13 // verify name, descr, color
14 cy.getByTestID('label-card')
15 .should('have.length', 1)
16 cy.getByTestID('label-card')
17 .contains(oldLabelName)
18 .should('be.visible')
19 ...
20 // modify
21 cy.getByTestID('label-card')
22 .contains(oldLabelName).click()
23 }

(b) influxdb ”Update Label” test code snippet.

Fig. 2: influxdb Network Resource Loading Example.

1 const modifiedDateSortButton =
getModifiedDateSortButton();↪→

2 await
waitUntilDisplayed(modifiedDateSortButton);↪→

3 await modifiedDateSortButton.click();

Fig. 3: generator-jhipster Resource Rendering Exam-
ple.

does not finish executing in 100 ms timeout. This conflicts
with the next request for verifying the order of calls.

1 verifyNoMoreInteractions(listener);
2 verify(listener, timeout(100))
3 .onRequestFinished(higherPriorityReq);
4 verify(listener, timeout(10))
5 .onRequestFinished(lowerPriorityReq);

Fig. 4: Volley Resource Loading Example.

c) Animation Timing Issue: Flaky tests relying on an-
imations are sensitive to timing differences in the running
environment and may be heavily optimized to skip animation

events. The sensitivity to scheduling in animations can lead
to issues where assertions on the events are used to test for
animation progress.

An example of this type of issue is seen in the plotly.js
project [11]. This project provides visualization components
such as bar graphs, line plots, and more for use in web
pages. In the transition tests, the developers find that they
intermittently fail due to an underlying race condition between
the call to transition the axes and the call to transition the bar
graphs. Depending on which transition is called first, assertions
made on the layout of the graph may fail as the bar graph
elements are in different positions than expected. In Figure 5,
screenshots from a code snippet provided to reproduce the
different states of the animation are shown. In Figure 5a,
we see that graph starts with the first bar is on value 3, the
second bar is on value 4, and the third bar is on value 5.
Figure 5b shows the frame immediately after the “react @
step 1” button is clicked, changing the values of the bars to 3,
6, and 5 respectively. In this figure, the background lines of
the axes have been shifted in order to represent the new scale,
but the bars scale incorrectly to the new axes values. Finally,
Figure 5c, the bars transition to their correct new values on
the new axes. Since the bars are not in the expected positions
during the transition test, the assertions made fail.

Another example is seen in the RXBinding
[12] project for Android’s UI widgets. In the
RxSwipeRefreshLayoutTest, which is used to test the
swipe refresh gesture, the call to stop the refresh animation
could happen anytime between the swipe release and the
actual refresh animation. The behavior is flaky because the
swipe animation timing used in the recorder is unable to
catch up to the listener.

2) Environment: Some flaky tests manifest due to differ-
ences in the underlying platform used to run the tests. The
platform can include the browser used for web projects and
the version of Android, iOS, etc... used for mobile projects.
We found that these issues can also be further divided into
two subcategories.

a) Platform Issue: These flaky tests suffer from an
underlying issue in one particular platform that causes results
obtained or actions performed to differ between consecutive
runs within that same platform. In the ring-ui project [13],
the screenshot tests for a drop-down component fail due to a
rendering artifact bug present on Internet Explorer. This bug
causes a slight variation around the drop-down border in the
screenshots taken that cause the tests to fail when compared.
These tests pass when run on other browsers.

One example on Android is about Androidx navigation
tool [14]. For some versions of Android, Espresso has flaky
behavior when performing a click action on the navigated
page because sometimes it cannot close the navigation drawer
before the click action. However, on other versions of Android,
this test always passed.

b) Layout Difference: Flaky tests can fail when the
layout is different than what is expected due to differences
in the browser environment. An example is found in the

retail-ui project [15]. This project contains a set of
reusable components targeted at retail sites. The screenshot
test for its dropdown component fails because different default
window sizes across different browsers causes the dropdown
box to be cut off in some browsers.

3) Test Runner API Issue: Another root cause of flakiness
we found involved an issue when interacting with the APIs
provided by the testing framework that caused it to func-
tion incorrectly. Flaky tests with this root cause either use
the provided APIs incorrectly, or the flaky tests manage to
expose an underlying issue in the provided API that causes
the functionality to differ from what was expected. We also
identify two subcategories among the flaky tests observed.

a) Incorrect Test Runner Interaction: UI tests use APIs
provided by the test runner to interact with UI elements, but
these APIs can hit unexpected behaviors that cause incorrect
behavior. For example, in the Android project FirefoxLite
[16], flakiness appeared because the testing model registered
the click action by Espresso as a long click. Figure 6 shows
the UI layout after performing the click action incorrectly.
A testing site should have opened by clicking “Sample Top
Site” button. However, the “Remove” menu popped up instead
because of the long click action on “Sample Top Site” button.
This behavior difference caused the test to fail.

b) DOM Selector Issue: Flaky tests interacting with
DOM elements are intermittently unable to select the correct
element due to differences in browser implementations or stale
elements blocking focus. An example of the flakiness arising
from an incorrect DOM element selection is found in the
react-datepicker project [17]. This project provides a
reusable date picker component for the React library. The code
under the test incorrectly sets two elements on the page to
auto-focus on, causing a jump on the page that results in a
visual flicker.

4) Test Script Logic Issue: In some flaky tests, flakiness
arose due to incorrect logic within the test scripts. The flaky
tests may have failed to clean data left by previous tests, made
incorrect assertions during the test, loaded resources in an
incorrect order, or incorrectly used a random data generator
to create incompatible data. We find that tests in this category
fall under one of four subcategories.

a) Incorrect Resource Load Order: Flaky tests in
this category load resources after the calls that load
the tests, causing the tested resources to be unavail-
able when the test is run. For example, in the project
mapbox-navigation-android [18], the test crashed
with an exception, because they duplicated a resource load
call and then initialized a navigation activity.

b) Time: Flaky tests can fail when performing a com-
parison using a timestamp that may have changed from when
it is created depending on the execution speed of the test.
An example is found in the react-jsonschema-form
project [19]. The project generates forms in React code by
specifying the fields in JSON. In this project, a test on its date
picker widget intermittently fails due to a strict comparison
of time. Figure 7a shows a screenshot of a test failure

(a) Starting State (b) Background Axes Transition (c) Bars Transition

Fig. 5: An animation timing issue in the plotly.js project. (a) presents the initial state of a bar graph using the library. The
bars start at values 3, 4, and 5, respectively. (b) The value of the bars are changed to 3, 6, and 5, respectively. The background
axes change scale, but the bars are scaled incorrectly. (c) The bars then adjust to the correct scale.

Fig. 6: FirefoxLite Incorrect Test Runner Interaction
Example.

within a CI system resulting from a strict comparison issue.
Figure 7b presents the faulty code snippet of the flaky test that
intermittently fails in the CI system. Depending on when the
test is run and how quickly the statements in the test execute,
the date-time value retrieved on Line 11 with the date-time
value generated in Line 12 can differ by a small amount,
causing the assertion on Line 13 to fail.

c) Test Order Dependency: Flaky tests in this category
can interfere with or be influenced by surrounding tests in the
test suit. This interference can be done through shared data
stores that are not cleaned well between test runs. As a result,
the data stores may contain values from previous tests and
produce incorrect values as a result. One example of this is
appeared in Android project RESTMock [20]. When trying
to reset the server between tests, the test would sometimes
return an exception, because there would be requests from the
previous test still running as Android shares some processes
between tests.

d) Randomness: Tests can use random data generation,
but these tests may intermittently fail for certain values of the
data generated. An example of this type of failure is found in
the nomad project [21], which provides a platform to deploy
and manage containers. In this project, they find that tests
utilizing the job factory component to generate fake tasks can
intermittently fail when a job given a name or URL with spaces
is created. This causes encoding issues later on in the tests.
Since spaces are not valid in these fields, the spaces generated
by the random string generator are edge cases that should have
been handled.

(a) CI system failure in react-jsonschema-form project when
strictly comparing two date-time values. The values only differ by a
marginal amount due to the time when the test is executed, but since
the comparison is strict, the test will fail intermittently depending on
when it is run.
1 it("should set current date when pressing the

Now button", () => {↪→

2 const { node, onChange } =
createFormComponent({↪→

3 schema: {
4 type: "string",
5 format: "date-time",
6 },
7 uiSchema,
8 });
9

10 Simulate.click(node.selector("a.btn-now"));
11 const formValue =

onChange.lastCall.args[0].formData;↪→

12 const expected =
toDateString(parseDateString(new
Date().toJSON(), true));

↪→

↪→

13 expect(comp.state.formData).eql(expected);
14 });

(b) react-jsonschema-form Strict Comparison Code snippet.

Fig. 7: react-jsonschema-form Strict Comparison
Check Example.

B. Results

From these samples, we were able to find characteristics
that are particular to flaky UI tests. The most predominant root
cause for these flaky UI tests involved improper handling of
asynchronous waiting mechanisms, such as the mechanisms
used when loading resources. These resources can include
network resources as well as elements that have not yet
been loaded in the page. This behavior resulted in erratic
results in the tests, such as attempting to click buttons that
had not yet opened. Many of these issues were resolved
by refactoring the code to include delays when handling a

potentially flaky call. We found that the root cause of the flaky
behavior could present a challenge to find and properly fix,
with some issues spanning over months to fix. In addition, the
flaky nature led some of these issue reports to be closed and
reopened in another report as many as five times. Other root
causes included platform-specific behavior, layout differences,
test order dependencies, and randomness. Platform-specific
behavior produces flaky results for different runs in the same
platform. Layout differences behavior causes flaky results
due to inconsistencies across different platforms. Flakiness
resulting from test order dependencies is caused by improper
cleanup of data after runs of previous tests. UI tests involving
random data generation can fail intermittently because of the
characteristics of the data generated.

V. MANIFESTATION

Reproducing flaky tests is a challenging task due to their
inherit non-deterministic behavior. If developers provide de-
tails on how the flaky behavior was initially encountered and
subsequently reproduced, this information provides possible
strategies to apply to similar cases. We explore the strategies
used by developers to manifest the underlying flaky behavior
and construct categories for similar manifestations actions
taken. These strategies are important when reporting the flaky
test as they are inherently non-deterministic in nature, so it is
challenging to reproduce them compared with regular bugs.
Our categories are summarized in Table V.

TABLE V: Summary of Manifestation Categories

Manifestation Category Web Mobile Total
Unspecified 101 40 141

Specify Problematic Platform 21 17 38

Reorder/Prune Test Suite 9 3 12
Reset Configuration Between Tests 2 7 9

Provide Code Snippet 14 6 20

Force Environment Conditions 5 10 15
Total 152 83 235

A. Specify Problematic Platform

Some tests are reported to only manifest on a specific
platform. In this case, the author of the report specifies the
problematic platform version to reproduce the flaky behavior.
An example of this type of manifestation is found in the
waterfox project [22]. This project is a web browser based
on Firefox. In this project, an issue involving animation timing
only manifests on MacOSX platforms. The report provides
details on which file to run on this particular platform in
order to reliably manifest the flaky behavior seen in the
animation test. Another example in an Android project is
from gutenberg-mobile [23]. This project is the mobile
version for Gutenberg Editor. Figure 8 shows the bug that
only appeared on the Google Pixel device with Android 10.
When deleting the last character, the placeholder text should
reveal as shown in Figure 8b; however, the text does not pop

up. Instead, the screen appeared as shown in Figure 8a. Users
would need to add an additional backspace key press to show
the placeholder text.

(b)(a)

Fig. 8: Gutenberg-mobile Specify Problematic Platform
issue Example.

B. Reorder/Prune Test Suite

Flakiness arising from test-order dependencies can be man-
ifested by running the tests without the full test suite. This
includes running tests by themselves, running tests in a dif-
ferent order, and changing the state between test runs in order
to show the flaky behavior. An example of this manifestation
strategy is seen in the influxdb project [24]. In this project,
the flaky behavior surrounding table sorting is manifested by
running the tests in the test suite independently. In some cases,
trying to reset the environment configuration between tests
can also lead to flakiness. In the project RESTMock [20],
the developers tried to reduce flakiness by resetting the server
configuration between tests. However, the test became more
unstable because some Android processes were shared among
these tests, and the forced reset caused concurrency conflicts.

C. Provide Code Snippet

Among the bug reports we observed, we find that some
reports include code snippets. The code snippets extract a
portion of the flaky test into an enclosed sample to make
reproducing the flaky behavior more reliable. An example of
this strategy is used in the project plotly.js project [25].
This projects provides data visualization components for use
in web pages. In this project, a test for a treemap component
contains a flaky image load. In order to manifest this more
reliably, the reporter created a publicly-accessible code snippet
that runs the component with the flaky loading behavior.

D. Force Environment Conditions

Flakiness that displays only when run on a specific platform
or under certain environment settings can be manifested by
forcibly setting these conditions, such as environment variables
or browser window size, during the test run. An example of
this can be found in the react-datepicker project [26].
This project provides a reusable datepicker component for use
in React apps. A test for the calendar component has flaky
behavior when run on the first two days of a new month. This
behavior is manifested by setting the time used in the test to
be one of these affected dates. Another example on Android

is a click function in Espresso [27]. If we run an Espresso test
which calls openActionBarOverflowOrOptionsMenu
on a slow device, a long-click action will be accidentally
performed. This bug can be manifested by a short long-click
timeout.

VI. FIXING STRATEGY

In this section, we examine the fixes of the flaky tests.
We identify common fixing patterns and group them into
categories. Through comparative analysis of root causes and
fixing strategies, we find that most async wait issues are fixed
by increasing delay or fixing the await mechanism used. The
issues caused by the environments such as platform issues
and layout differences normally could not be solved. The
developers prefer to fix these tests by using a workaround
or changing the library version. Table VI summarizes the cat-
egories and distribution of fixing strategies and are described
in the following paragraphs.

TABLE VI: Summary of Fixing Categories Found

Categories Subcategories Web Mobile Total

Delay
Add/Increase Delay 14 7 21
Fix Await Mechanism 35 8 43

Dependency
Fix API Access 1 11 12
Change Library Version 1 6 7

Refactor Test Refactor Logic Implementation 49 26 75
Disable Features Disable Animations 1 3 4
Remove Test Remove Test 51 22 73

Total 152 83 235

A. Delay

1) Add or Increase Delay: In order to reduce the chance of
encountering flaky behavior, some tests will add or increase
the delay between actions that involve fetching or loading.
This prevents the rest of the test script from executing until
the delay is up, giving the asynchronous call additional time
to complete before moving on. An example of this fix is
used in the next.js project [28]. This project is used to
generate complete web applications with React as the frontend
framework. The patch increases the delays used in multiple
steps as shown in Figure 9. In the figure, Line 1 loads a new
browser instance and navigates to the “about” page. Lines 2
and 3 get the text on the page and assert that it is equal to
the expected value. Lines 4 and 5 manipulate the about page’s
component file on the filesystem to make it invalid for use.
Line 6 was the delay used before of 3 seconds. If the test is
run during a heavy load on the CI, the operation in Line 5
may take longer than 3 seconds, so the fix is to update the
wait to 10 seconds shown in Line 7. Finally, Line 9 makes the
assertion that the updated text on the page shown matched the
expected error message. While this does not fix the root cause
directly, this code patch does decrease the chance of running
into a timing issue during testing.

1 const browser = await
webdriver(context.appPort, '/hmr/about')↪→

2 const text = await
browser.elementByCss('p').text()↪→

3 expect(text).toBe('This is the about page.')
4 const aboutPage = new File(join(__dirname,

'../', 'pages', 'hmr', 'about.js'))↪→

5 aboutPage.replace('export default', 'export
default "not-a-page"\nexport const fn = ')↪→

6 - await waitFor(3000)
7 + await waitFor(10000))
8 expect(await

browser.elementByCss('body').text())↪→

9 .toMatch(/The default export is not a React
Component/)↪→

Fig. 9: next-js Increase Delay Example.

2) Fix Waiting Mechanism: In order to fix flaky behavior,
some tests fix the mechanisms used to wait on an asyn-
chronous call. This ensures that the call would finish before
moving forward in the test script. An example is seen in
the gestalt project [29]. This project contains a set of
reusable components used on the Pinterest website. This test
is run using a headless browser, and it is accessed through
the page variable. In Figure 10, lines 2-10 emit an event
on the page to trigger the action being tested. Line 12 is
supposed to pause the script execution for 200 milliseconds
in order for the page to complete the action from the event
handler. However, the function page.waitFor returns an
asynchronous JavaScript promise, so it requires the await
keyword in order to allow the promise to resolve before the
lines after the call are run. The issue is fixed by adding the
await keyword where needed.

1 it('removes all items', async () => {
2 await page.evaluate(() => {
3 window.dispatchEvent(
4 new CustomEvent('set-masonry-items', {
5 detail: {
6 items: [],
7 },
8 })
9);

10 });
11
12 - page.waitFor(200);
13 + await page.waitFor(200);
14
15 const newItems = await

page.$$(selectors.gridItem);↪→

16 assert.ok(!newItems newItems.length === 0);
17 });

Fig. 10: Gestalt Fix Waiting Example.

Another example in an Android project is from project
RXBinding [12]. The developers avoided flakiness in this
refresh layout test by manually removing the callbacks of
stopRefreshing and adding it back after 300 ms delay, if
the motion ACTION_UP has been caught. The code snippet
is shown in Figure 11.

1 + swipeRefreshLayout
2 + .setId(R.id.swipe_refresh_layout);
3 + swipeRefreshLayout.setOnTouchListener(new

View.OnTouchListener() {↪→

4 + @Override public boolean onTouch(View v,
MotionEvent event) {↪→

5 + if
(MotionEventCompat.getActionMasked(event)
== MotionEvent.ACTION_UP) {

↪→

↪→

6 +
handler.removeCallbacks(stopRefreshing);↪→

7 + handler.postDelayed(stopRefreshing,
300);↪→

Fig. 11: RxBinding Fix Waiting Mechanism Example.

B. External Dependency

1) Fix Incorrect API Access: Some tests resolved the flak-
iness by fixing the usage of an incorrect API function. After
switching this function, the test script behaved as expected. An
example is shown in the material-ui project [30], which
provides reusable web components implementing the Material
design system. An API function from the testing library
used to access DOM element children is incorrect. The code
snippet in Figure 12 shows how the incorrect API function is
fixed by calling the proper getPopperChildren function
instead of attempting to get the element’s children directly.
The correct function adds additional selection criteria in order
to work within the template code generated by the third-party
popper.js [31] framework.

1 - assert.strictEqual(
2 - wrapper.find(Popper)
3 - .childAt(0)
4 - .hasClass(classes.tooltip),
5 - true
6 -);
7
8 + function getPopperChildren(wrapper) {
9 + return new ShallowWrapper(

10 + wrapper
11 + .find(Popper)
12 + .props()
13 + .children({ popperProps: { style: {} },

restProps: {} }),↪→

14 + null
15 +);
16 + }
17
18 + const popperChildren =

getPopperChildren(wrapper);↪→

19 + assert.strictEqual(
20 + popperChildren.childAt(0)
21 + .hasClass(classes.tooltip),
22 + true);

Fig. 12: material-ui Fix Incorrect API Example.

Another example on the Android platform is found in the
Detox project [32]. The action to launch an application
in an existing instance, which has launched an app during
initialization, can lead to flaky behavior. Launching an app
dynamically in UIAutomator is performed by moving to the
recent-apps view and then selecting the app name. However,

1 - device.pressRecentApps();
2 - UiObject recentApp =

device.findObject(selector
.descriptionContains(appName));

↪→

↪→

3 - recentApp.click();
4
5 + final Activity activity =

ActivityTestRule.getActivity();↪→

6 + final Context appContext =
activity.getApplicationContext();↪→

7 + final Intent intent = new Intent(appContext,
activity.getClass());↪→

8 + intent.setFlags(Intent
.FLAG_ACTIVITY_SINGLE_TOP);↪→

9 + launchActivitySync(intent);

Fig. 13: Detox Fix Incorrect API Example.

sometimes the recent-apps view shows the full activity name
(e.g. com.wix.detox.MainActivity), instead of app name (e.g.
Detox), which causes flakiness. To fix this bug, developer
removed the UIAUtomator API and created new instances for
each launch request. Figure 13 shows the code snippet of this
fixing process.

2) Change Library Version: Some tests changed the version
of a dependency used in the test as the developers found that
the new version introduced the flaky behavior.

C. Refactor Test Checks

1) Refactor Logic Implementation: Some tests made
changes to the logic used when performing checks in order
to improve the intended purpose of the test while removing
the flakiness observed in the test. An example is found in the
react-jsonschema-form project [19]. In the repository,
a check between consecutive timestamps is given an additional
error margin to handle the case of slow execution. Figure 14
shows the code snippet changing the exact date-time compar-
ison in Line 3 to the comparsion with an error margin of 5
seconds in Line 8.

1 - const expected = toDateString(
2 parseDateString(new Date().toJSON(),

true));↪→

3 - expect(comp.state.formData).eql(expected);
4 + // Test that the two DATETIMEs are within 5

seconds of each other.↪→

5 + const now = new Date().getTime();
6 + const timeDiff = now - new

Date(comp.state.formData)↪→

7 .getTime();
8 + expect(timeDiff).to.be.at.most(5000);

Fig. 14: react-jsonschema-form Refactor Logic Imple-
mentation Example.

D. Disable Features During Testing

1) Disable Animations: In order to remove flakiness caused
by animation timing, some test completely disabled animations
during their run. This change removed the concern of ensuring
an animation had completely finished before proceeding with
the rest of the script. An example of this is seen in the the

wix-style-react project where code is added to disable
CSS animations when the test suite is run [33]. Figure 15
shows the disableCSSAnimation function defined on
Lines 1-15 CSS rules disabling all transitions and animations.
Line 21 adds a call to this function before all tests in the test
suite are run.

1 + export const disableCSSAnimation = () => {
2 + const css = '* {' +
3 + '-webkit-transition-duration: 0s !important;'

+↪→

4 + 'transition-duration: 0s !important;' +
5 + '-webkit-animation-duration: 0s !important;'

+↪→

6 + 'animation-duration: 0s !important;' +
7 + '}',
8 + head = document.head ||
9 +

document.getElementsByTagName('head')[0],↪→

10 + style = document.createElement('style');
11
12 + style.type = 'text/css';
13 + style.appendChild(document.createNode(css));
14 + head.appendChild(style);
15 + };
16 ...
17 beforeAll(() => {
18 browser.get(storyUrl);
19 + browser.executeScript(disableCSSAnimation);
20 });

Fig. 15: wix-style-react Disable Animations Example.

E. Removing Tests From Test Suite

1) Remove Tests: In order to fix the test suite runs, some
projects choose to remove these tests from the suite. This fix
removes the flakiness in the test suite attributed to the flaky
test being removed but reduces the code coverage.

2) Mark Tests as Flaky: Some tests are not entirely re-
moved from the test suite. Instead, they are marked as being
flaky which means that if the test fails, the entire test suite
does not fail. This allows the test suite to be isolated from
the effects of the flaky test without completely removing the
coverage it provides.

3) Blacklist Tests: In order to conditionally prevent some
tests from running, tests are added to a blacklist. The test in
these blacklists can be skipped from test runs by setting the
appropriate options for when the blacklist should be used.

VII. DISCUSSION AND IMPLICATIONS

We investigate our collected flaky UI tests to identify
relationships between the root causes, manifestation strategies,
and fixing strategies defined in Sections IV, V, and VI,
respectively.

Through our inspection, we can identify relationships be-
tween the underlying root causes in issues and how the issue
was fixed. These relationships are presented in Figure 16.

The goal of our study on flaky UI tests is to gain insights
for designing automated flaky UI test detection and fixing
approaches, so we analyze our dataset to identify correlations
between manifestation strategies and root causes. However,

Test Runner API
Issue

Environment

Async Wait

Disable
Animations

Fix API Access

Fixing StrategiesRoot Causes

Test Script
Logic Issue

Animation Timing Issue
Resource Rendering

Network Resource Loading

Incorrect Resource Load Order
Test Order Dependency

Other types

DOM Selector Issue

Incorrect Test Runner Interaction

Platform Issue

Layout Difference

Fix Await
Mechanism

Add Delay

Change Library
Version

Refactor Logic

Fig. 16: Relationship Between Root Causes and Fixing Strate-
gies.

we find that no strong correlations between these two groups
exist in the dataset. Similarly, we could not identify strong
correlations between manifestation strategy and fixing strategy.
This leaves the question of detection strategies for flaky UI
tests left open for future work to address. Our results do
support relationships between root causes and fixing strategies.
If the root cause of a flaky UI test is known, the relationships
we draw in Figure 16 can be used to select an appropriate
fixing strategy.

Preliminary design ideas can be made for some of the fixing
strategies we identify in Section VI. For the Add/Increase
Delay fixing strategy, a possible automated implementation
could identify statements that perform the timing delay and
increase the amount of time specified. If there is no delaying
statement, then a delay can be after asynchronous function
calls are performed. Granular details such as the amount of
time to add in the delay or reliably identifying asynchronous
function calls requires further analysis on the collected sam-
ples. Using the relationships found in Figure 16, this approach
can be used to fix issues caused by Resource Rendering
(22.4%) and Animation Timing Issue (15.4%). For the Fix
Await Mechanism fixing strategy, an approach for automatic
repair would be to identify statements that implement asyn-
chronous wait mechanisms incorrectly. The details for this
approach would be dependent on the language of the project
and would require further analysis of the collected samples.
This approach for an automated implementation of the Fix
Await Mechanism can be used to fix Incorrect Resource Load
Order (52.4%), Animation Timing Issue (38.5%), Resource
Rendering (20.7%), and DOM Selector Issue (18.8%). The
Disable Animations fix can be implemented by configuring
the test environment to disable animations globally when
setting up. This approach can be used to fix issues caused by
Animation Timing Issue (7.7%), Resource Rendering (1.7%),
and DOM Selector Issue (6.25%). The Change Library Version
fixing strategy could be automated by methodically switching
different versions of the dependencies used in the project. This
approach could be used to address issues caused by Animation
Timing Issue (7.7%) and Test Runner API Issue (6.25%).

VIII. THREATS TO VALIDITY

The results of our study are subject to several threats,
including the representativeness of the projects inspected, the
correctness of the methodology used, and the generalizability
of our observations.

Regarding the representativeness of the projects in our
dataset, we focused on the most popular repositories associated
with popular frameworks on web and Android. We restrict
the repositories to focus on repositories that impact real
applications as opposed repositories under heavy development.
For mobile projects, we searched through GitHub database
with strict and clear condition settings to ensure that the
samples we obtain are targeted and representative.

In respect to the correctness of the methodology used, we
collect all available commits on GitHub from the repositories
related to popular web UI frameworks. We also leveraged the
GitHub Archive repository to find all issues related to Android
UI frameworks. We filter out irrelevant commits and issues
using keywords and then manually inspect the remaining
commits and issues in order to verify the relevance to flaky
UI tests. Each sample was inspected by at least two people in
order to achieve consensus on the data collected.

Regarding the generalizability of the implications made, we
selected flaky test samples from actual projects used in the
wild. In addition, the samples do include large-scale industrial
projects, such as the Angular framework itself. We limit
numeric implications only to the dataset collected, and focus
on qualitative implications made on the features of the test
samples.

IX. RELATED WORK

Empirical Studies on Software Defects. There have been
several prior studies analyzing the fault-related characteristics
of software systems [34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45]. For example, in Lu et al. [36] an empirical study was
conducted on concurrency bugs. In Sahoo et al. [37], bugs in
server software were studied, and in Chou et al. [35], operating
system errors were investigated.
Studying Flaky Tests. Flaky tests have gained interest among
the academic community. These tests were first looked at in
2014 by Luo et al. [2]. In this study, 201 commits from
51 open-source Java projects were manually inspected and
categorized into 11 categories. Later, Zhang et al. (2014) [46]
performed studied flaky tests specifically caused by test order
dependencies. In 2015, Goa et al. [47] conducted a study
that concluded that reproducing flaky tests can be difficult.
Thorve et al. (2018) [48] studied 29 Android projects with
77 commits related to flakiness. They found three new cat-
egories differing from the ones identified in earlier studies:
Dependency, Program Logic, and UI. Lam et al. (2019) [4]
examine the presence of flaky test in large-scale industrial
projects and find that flaky test cause a significant impact
on build failure rates. Morán et al. (2019) [49] develop the
FlakcLoc technique to find flaky tests in web applications by
executing them under different environment conditions. Eck et
al. (2019) [50] survey 21 professional developers from Mozilla

to learn about the perceptions that developers have on the
impacts that flaky tests cause during development. Dong et al.
(2020) [51] inspect 28 popular Android apps and 245 identified
flaky tests to develop their FlakeShovel technique that controls
and manipulates thread execution. Lam et al. (2020) [52] study
the lifecycle of flaky tests in large-scale projects at Microsoft
by focusing on the timing between flakiness reappearance, the
runtime of the tests, and the time to fix the flakiness.
Detecting and Fixing Flaky Tests. Bell et al. (2018) [3]
developed the technique DeFlaker to detect flaky tests by
monitoring the coverage of code changes in the executing
build with the location that triggered the test failure. Flaky
tests were those that failed without executing any of the new
code changes. Lam et al. (2019) [4] develop the framework
RootFinder to identify flaky tests and their root causes through
dynamic analysis. The tool iDFlakies can detect flaky tests
and classify the tests into order-dependent and non-order-
dependent categories [53]. Shi et al. (2019) [54] develop
the tool iFixFlakies to detect and automatically fix order-
dependent tests by using code from other tests within a test
suite to suggest a patch. Terragni et al. (2020) [55] proposed
a technique to run flaky tests in multiple containers with
different environments simultaneously.

X. CONCLUSIONS

This paper performs a study on flakiness arising in UI tests
in both web and mobile projects. We investigated 235 flaky
tests collected from 25 web and 37 mobile popular GitHub
repositories. The flaky test samples are analyzed to identify
the typical root causes of the flaky behavior, the manifestation
strategies used to report and reproduce the flakiness, and the
common fixing strategies applied to these tests to reduce the
flaky behavior. Through our analysis, we present findings on
the prevalence of certain root causes, the differences that
root causes appear between web and mobile platforms, and
the differences in the rates of fixing strategies applied. We
believe our analysis can provide guidance towards develop-
ing effective detection and prevention techniques specifically
geared towards flaky UI tests. We make our dataset available
at https://ui-flaky-test.github.io/.

XI. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. This research was partially supported by NSF
2047980 and Facebook Testing and Verification Research
Award (2019). Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily
reflect the views of our sponsors.

REFERENCES

[1] J. Micco, “The state of continuous integration testing@ google,” 2017.
[2] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis

of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
643–653. [Online]. Available: https://doi.org/10.1145/2635868.2635920

https://ui-flaky-test.github.io/
https://doi.org/10.1145/2635868.2635920

[3] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 2018,
pp. 433–444.

[4] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2019, pp. 101–111.

[5] “Search,” 2020. [Online]. Available: https://docs.github.com/en/rest/
reference/search

[6] Github, “Github archive.” [Online]. Available: https://archiveprogram.
github.com/

[7] “chore: use base64 uri decoded avatar to avoid flaky ui tests if image,”
2020. [Online]. Available: https://github.com/JetBrains/ring-ui/commit/
f7bc28af06433ff22e898aacd2b3e8f0534defda

[8] “fix(e2e): fix race conditions,” 2019. [On-
line]. Available: https://github.com/influxdata/influxdb/commit/
4f5ff962d69a84f7a6970b02f9e79b09dbad21fe

[9] pascalgrimaud, “react: Fix intermittent e2e failures,”
https://github.com/jhipster/generator-jhipster/commit/
2865e441e4b09335f88f3839ee9147f8b8b9c05e, 2019.

[10] sphill99 and S. Phillips, “google/volley,” 2017.
[11] alexcjohnson, “one more flaky test suite,” https://github.com/plotly/

plotly.js/commit/a2fc07a187c4d26bf2f1bcb3e2aa806b75ad24fc, 2018.
[12] nojunpark, “Fix rxswipedismissbehavior flaky test,”

https://github.com/JakeWharton/RxBinding/commit/
affa7a4f58e5becec4ad8b49d30f525d6ad4c2a6, 2016.

[13] princed, “Concurrent modification excep-
tion,” https://github.com/JetBrains/ring-ui/commit/
5d9f96d6ffa3a3c99722047677d5a545c02bdd80, 2017.

[14] chklow, “Espresso is not waiting for drawer to close,” 2019. [Online].
Available: https://github.com/android/testing-samples/issues/289

[15] “test(dropdowncontainer): fix flaky screenshot test,” 2019.
[Online]. Available: https://github.com/skbkontur/retail-ui/commit/
a006fdf0e0e65d5fde07134c6909870666e7947f

[16] cnevinc, “[ui test intermittent],” 2018. [Online]. Available: https:
//github.com/mozilla-tw/FirefoxLite/issues/2549

[17] Hacker0x01, “Remove second autofocus example,” 2018.
[Online]. Available: https://github.com/Hacker0x01/react-datepicker/
pull/1390/commits/8fc31964251944be79f2e8699b79e5f39080272f

[18] Guardiola31337, “Flaky navigationvieworientationtest,” https://github.
com/mapbox/mapbox-navigation-android/issues/1209, 2018.

[19] “merge pull request 167 from mozilla-services/162-
fix-intermittent-da,” 2020. [Online]. Available:
https://github.com/rjsf-team/react-jsonschema-form/commit/
2318786b38ead5eddc7c0e3146825f19013e0beb

[20] Sloy, “Concurrent modification exception,” 2019. [Online]. Available:
https://github.com/andrzejchm/RESTMock/issues/103

[21] “Ui: Fix a couple flaky tests,” 2018. [On-
line]. Available: https://github.com/hashicorp/nomad/pull/4167/commits/
69251628f7a3f03ce603abfea5c8f48b4804c39e

[22] MrAlex94, “Bug 1504929 - start animations once after a mozreftestin-
validate,” 2018. [Online]. Available: https://github.com/MrAlex94/
Waterfox/commit/23793e3a2172787eca440889a8c4ec3cc6069862

[23] mchowning, “Deleting heading block content requires extra backspace
to show placeholder,” 2020. [Online]. Available: https://github.com/
wordpress-mobile/gutenberg-mobile/issues/1663

[24] influxdata, “fix(ui): front end sorting for numeric values now being
handled,” 2019. [Online]. Available: https://github.com/influxdata/
influxdb/commit/bba04e20b44dd0f8fd049d80f270424eb266533f

[25] etpinard, “add treemap coffee to list of flaky image tests,”
2020. [Online]. Available: https://github.com/plotly/plotly.js/commit/
66156054cb08b90bc50219ff9a2baeebb674c580

[26] aij, “Fix flaky failing test,” 2017. [Online].
Available: https://github.com/Hacker0x01/react-datepicker/commit/
db64f070d72ff0705239f613bd5bba9602d3742f

[27] “Espresso,” 2020. [Online]. Available: https://developer.android.com/
training/testing/espresso

[28] vercel, “introduce dynamic(() =¿ import()),” 2020.
[Online]. Available: https://github.com/vercel/next.js/commit/
42736c061ad0e5610522de2517c928b2b8af0ed4

[29] pinterest, “masonry: masonryinfinite for infinite fetching (307),”
2020. [Online]. Available: https://github.com/pinterest/gestalt/commit/
f6c683b66b2d8b0ec87db283418459e87160a21f

[30] “[test] fix flaky popper.js test,” 2020. [On-
line]. Available: https://github.com/mui-org/material-ui/commit/
9d1c2f0ab014c76ddc042dea58a6a9384fc108f4

[31] popperjs, “Tooltip popover positioning engine,” 2020. [Online].
Available: https://github.com/popperjs/popper-core

[32] d4vidi, “Fix consecutive app-launches issue,” 2019. [On-
line]. Available: https://github.com/wix/Detox/pull/1690/commits/
c982798e8904b8384e4966f4ed20700b66921b399

[33] “skip flaky visual eyes test (3306),” 2020. [On-
line]. Available: https://github.com/wix/wix-style-react/commit/
ddebb9fc31f3aaea7b80dea034c3baa256ec2b74

[34] R. Chillarege, W. . Kao, and R. G. Condit, “Defect type and its impact on
the growth curve (software development),” in [1991 Proceedings] 13th
International Conference on Software Engineering, 1991, pp. 246–255.

[35] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” Operating Systems Review (ACM),
vol. 35, 09 2001.

[36] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in ASPLOS, 2008.

[37] S. K. Sahoo, J. Criswell, and V. Adve, “An empirical study of reported
bugs in server software with implications for automated bug diagnosis,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 485–494. [Online].
Available: https://doi.org/10.1145/1806799.1806870

[38] M. Sullivan and R. Chillarege, “A comparison of software defects in
database management systems and operating systems,” in [1992] Digest
of Papers. FTCS-22: The Twenty-Second International Symposium on
Fault-Tolerant Computing, 1992, pp. 475–484.

[39] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs in
machine learning systems,” in 2012 IEEE 23rd International Symposium
on Software Reliability Engineering, 2012, pp. 271–280.

[40] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 26–36. [Online].
Available: https://doi.org/10.1145/2025113.2025121

[41] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ser. SOSP ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
159–172. [Online]. Available: https://doi.org/10.1145/2043556.2043572

[42] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensorflow program bugs,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 129–140. [Online]. Available:
https://doi.org/10.1145/3213846.3213866

[43] J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors
and omissions in software repositories,” in 2009 IEEE 31st International
Conference on Software Engineering, 2009, pp. 298–308.

[44] Weining Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Zhenyu Yang,
“Characterization of linux kernel behavior under errors,” in 2003 In-
ternational Conference on Dependable Systems and Networks, 2003.
Proceedings., 2003, pp. 459–468.

[45] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in gcc and llvm,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
294–305. [Online]. Available: https://doi.org/10.1145/2931037.2931074

[46] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and
D. Notkin, “Empirically revisiting the test independence assumption,”
in Proceedings of the 2014 International Symposium on Software
Testing and Analysis, ser. ISSTA 2014. New York, NY, USA:
Association for Computing Machinery, 2014, p. 385–396. [Online].
Available: https://doi.org/10.1145/2610384.2610404

[47] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making
system user interactive tests repeatable: When and what should we
control?” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, 2015, pp. 55–65.

https://docs.github.com/en/rest/reference/search
https://docs.github.com/en/rest/reference/search
https://archiveprogram.github.com/
https://archiveprogram.github.com/
https://github.com/JetBrains/ring-ui/commit/f7bc28af06433ff22e898aacd2b3e8f0534defda
https://github.com/JetBrains/ring-ui/commit/f7bc28af06433ff22e898aacd2b3e8f0534defda
https://github.com/influxdata/influxdb/commit/4f5ff962d69a84f7a6970b02f9e79b09dbad21fe
https://github.com/influxdata/influxdb/commit/4f5ff962d69a84f7a6970b02f9e79b09dbad21fe
https://github.com/jhipster/generator-jhipster/commit/2865e441e4b09335f88f3839ee9147f8b8b9c05e
https://github.com/jhipster/generator-jhipster/commit/2865e441e4b09335f88f3839ee9147f8b8b9c05e
https://github.com/plotly/plotly.js/commit/a2fc07a187c4d26bf2f1bcb3e2aa806b75ad24fc
https://github.com/plotly/plotly.js/commit/a2fc07a187c4d26bf2f1bcb3e2aa806b75ad24fc
https://github.com/JakeWharton/RxBinding/commit/affa7a4f58e5becec4ad8b49d30f525d6ad4c2a6
https://github.com/JakeWharton/RxBinding/commit/affa7a4f58e5becec4ad8b49d30f525d6ad4c2a6
https://github.com/JetBrains/ring-ui/commit/5d9f96d6ffa3a3c99722047677d5a545c02bdd80
https://github.com/JetBrains/ring-ui/commit/5d9f96d6ffa3a3c99722047677d5a545c02bdd80
https://github.com/android/testing-samples/issues/289
https://github.com/skbkontur/retail-ui/commit/a006fdf0e0e65d5fde07134c6909870666e7947f
https://github.com/skbkontur/retail-ui/commit/a006fdf0e0e65d5fde07134c6909870666e7947f
https://github.com/mozilla-tw/FirefoxLite/issues/2549
https://github.com/mozilla-tw/FirefoxLite/issues/2549
https://github.com/Hacker0x01/react-datepicker/pull/1390/commits/8fc31964251944be79f2e8699b79e5f39080272f
https://github.com/Hacker0x01/react-datepicker/pull/1390/commits/8fc31964251944be79f2e8699b79e5f39080272f
https://github.com/mapbox/mapbox-navigation-android/issues/1209
https://github.com/mapbox/mapbox-navigation-android/issues/1209
https://github.com/rjsf-team/react-jsonschema-form/commit/2318786b38ead5eddc7c0e3146825f19013e0beb
https://github.com/rjsf-team/react-jsonschema-form/commit/2318786b38ead5eddc7c0e3146825f19013e0beb
https://github.com/andrzejchm/RESTMock/issues/103
https://github.com/hashicorp/nomad/pull/4167/commits/69251628f7a3f03ce603abfea5c8f48b4804c39e
https://github.com/hashicorp/nomad/pull/4167/commits/69251628f7a3f03ce603abfea5c8f48b4804c39e
https://github.com/MrAlex94/Waterfox/commit/23793e3a2172787eca440889a8c4ec3cc6069862
https://github.com/MrAlex94/Waterfox/commit/23793e3a2172787eca440889a8c4ec3cc6069862
https://github.com/wordpress-mobile/gutenberg-mobile/issues/1663
https://github.com/wordpress-mobile/gutenberg-mobile/issues/1663
https://github.com/influxdata/influxdb/commit/bba04e20b44dd0f8fd049d80f270424eb266533f
https://github.com/influxdata/influxdb/commit/bba04e20b44dd0f8fd049d80f270424eb266533f
https://github.com/plotly/plotly.js/commit/66156054cb08b90bc50219ff9a2baeebb674c580
https://github.com/plotly/plotly.js/commit/66156054cb08b90bc50219ff9a2baeebb674c580
https://github.com/Hacker0x01/react-datepicker/commit/db64f070d72ff0705239f613bd5bba9602d3742f
https://github.com/Hacker0x01/react-datepicker/commit/db64f070d72ff0705239f613bd5bba9602d3742f
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://github.com/vercel/next.js/commit/42736c061ad0e5610522de2517c928b2b8af0ed4
https://github.com/vercel/next.js/commit/42736c061ad0e5610522de2517c928b2b8af0ed4
https://github.com/pinterest/gestalt/commit/f6c683b66b2d8b0ec87db283418459e87160a21f
https://github.com/pinterest/gestalt/commit/f6c683b66b2d8b0ec87db283418459e87160a21f
https://github.com/mui-org/material-ui/commit/9d1c2f0ab014c76ddc042dea58a6a9384fc108f4
https://github.com/mui-org/material-ui/commit/9d1c2f0ab014c76ddc042dea58a6a9384fc108f4
https://github.com/popperjs/popper-core
https://github.com/wix/Detox/pull/1690/commits/c982798e8904b8384e4966f4ed20700b66921b399
https://github.com/wix/Detox/pull/1690/commits/c982798e8904b8384e4966f4ed20700b66921b399
https://github.com/wix/wix-style-react/commit/ddebb9fc31f3aaea7b80dea034c3baa256ec2b74
https://github.com/wix/wix-style-react/commit/ddebb9fc31f3aaea7b80dea034c3baa256ec2b74
https://doi.org/10.1145/1806799.1806870
https://doi.org/10.1145/2025113.2025121
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2610384.2610404

[48] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2018, pp. 534–538.

[49] J. Morán, C. Augusto Alonso, A. Bertolino, C. de la Riva, and J. Tuya,
“Debugging flaky tests on web applications,” 01 2019, pp. 454–461.

[50] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developer’s perspective,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 830–840. [Online]. Available: https:
//doi.org/10.1145/3338906.3338945

[51] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Concurrency-
related flaky test detection in android apps,” 2020.

[52] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study
on the lifecycle of flaky tests,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1471–1482. [Online]. Available: https://doi.org/10.1145/3377811.
3381749

[53] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
Framework for Detecting and Partially Classifying Flaky Tests,” in 2019
12th IEEE Conference on Software Testing, Validation and Verification
(ICST), Apr. 2019, pp. 312–322, iSSN: 2159-4848.

[54] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “ifixflakies:
A framework for automatically fixing order-dependent flaky tests,”
in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 545–555. [Online].
Available: https://doi.org/10.1145/3338906.3338925

[55] P. S. Valerio Terragni and F. Ferrucci, “A container-based infrastructure
for fuzzy-driven root causing of flaky tests,” 2020.

https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3338906.3338925

	Introduction
	Background
	Impacts of Flaky UI Tests
	Individual Test Failures
	Build Failures
	CI Test Timeouts

	Methodology
	Sample Collection
	Web
	Android

	Portion of Flaky UI Tests to Other Tests
	Sample Inspection
	Dataset Composition

	Cause of Flakiness
	Categorization
	Async Wait
	Environment
	Test Runner API Issue
	Test Script Logic Issue

	Results

	Manifestation
	Specify Problematic Platform
	Reorder/Prune Test Suite
	Provide Code Snippet
	Force Environment Conditions

	Fixing Strategy
	Delay
	Add or Increase Delay
	Fix Waiting Mechanism

	External Dependency
	Fix Incorrect API Access
	Change Library Version

	Refactor Test Checks
	Refactor Logic Implementation

	Disable Features During Testing
	Disable Animations

	Removing Tests From Test Suite
	Remove Tests
	Mark Tests as Flaky
	Blacklist Tests

	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusions
	Acknowledgments
	References

