Check for
Updates

WBSan: WebAssembly Bug Detection for Sanitization and
Binary-Only Fuzzing

Xiao Wu
xiaowu@hust.edu.cn
Huazhong University of Science and
Technology Hubei Key Laboratory of
Distributed System Security
Wuhan, China

Cai Fu’
fucai@hust.edu.cn
Huazhong University of Science and
Technology Hubei Key Laboratory of
Distributed System Security
Wuhan, China

Abstract

With the advancement of WebAssembly, abbreviated as Wasm,
various memory bugs and undefined behaviors have emerged, lead-
ing to security issues that affect usability and portability. Existing
methods struggle to detect these problems in Wasm binaries due
to challenges associated with binary instrumentation and the diffi-
culty of defining legal memory bounds. While sanitizers combined
with fuzzing are recognized as effective means for identifying bugs,
current Wasm sanitizers necessitate compile-time instrumentation,
rendering them unsuitable for practical scenarios where only bi-
naries are accessible. In this paper, we propose WBSan, the first
Wasm binary sanitizer employing static analysis and Wasm binary
instrumentation to detect memory bugs and undefined behaviors.
We develop distinct instrumentation patterns tailored for each type
of bug and introduce Wasm shadow memory to address complex
memory bugs. Our results reveal that WBSan achieves a 16.8% false
detection rate, outperforming current Wasm binary checkers and
native sanitizers in detecting memory bugs and undefined behav-
iors. Furthermore, when compared with the binary-only fuzzer,
WBSan uncovers more crashes and achieves greater code coverage.

CCS Concepts

« Security and privacy — Vulnerability scanners.

Keywords
WebAssembly; Sanitizer; Fuzzing; Bug detection

ACM Reference Format:

Xiao Wu, Junzhou He, Liyan Huang, Cai Fu, and Weihang Wang. 2025.
WBSan: WebAssembly Bug Detection for Sanitization and Binary-Only
Fuzzing. In Proceedings of the ACM Web Conference 2025 (WWW °25), April

“Both authors serve as corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW 25, Sydney, NSW, Australia.

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714622

3311

Junzhou He
junzhouh@usc.edu
University of Southern California
Los Angeles, United States

Liyan Huang
liyanhua@usc.edu
University of Southern California
Los Angeles, United States

Weihang Wang"
weihangw@usc.edu
University of Southern California
Los Angeles, United States

28-May 2, 2025, Sydney, NSW, Australia. ACM, New York, NY, USA, 12 pages.
https://doi.org/lo.l145/3696410.3714622

1 Introduction

WebAssembly (abbreviated Wasm) [30] is a binary instruction for-
mat that serves as a compilation target for high-level languages
including C, C++, C#, and more [45]. Wasm can be deployed to
the web and other platforms, such as IoTs [39, 40], smart con-
tracts [22, 57, 61], and cloud computing [35, 50, 58].

Analyzing closed-source Wasm binaries is currently not an easy
task since such analysis relies on automatic bug detection methods
which typically integrate sanitizers [25]. Current approaches for
identifying issues in Wasm binaries often utilize fuzzing without
adequate sanitization to trigger diverse bug types [33, 38], or are
limited to unsound statically targeting only specific categories of
bugs [19, 20]. Given the proven effectiveness of sanitizers in con-
junction with fuzzing for detecting a wide range of memory errors
and undefined behaviors, it is a logical progression to develop sani-
tizers specifically tailored for Wasm binaries. Sanitizers generally
capture the program execution state through static or dynamic
instrumentation to conduct relevant checks. Although a prevalent
WebAssembly compiler Emscripten already supports ASAN, Ad-
dress Santizer, and UBSAN, Undefined Behavior Santizer, in Wasm
programs [1], they necessitate instrumentation at the source code or
intermediate representation (IR) level during compilation, making
it hard to apply them on binary directly. To this end, developing a
comprehensive, cost-effective, and automation-integratable binary
Wasm sanitizer to detect these issues becomes meaningful.

Implementing such Wasm binary sanitizer presents several chal-
lenges: 1) Different program architectures. Although substantial
work exists on binary sanitizers in the native programming do-
main [15, 25, 29, 48, 53], Wasm diverges from traditional von Neu-
mann architecture, where code and data are stored together [36].
In Wasm, the code and data are stored separately. Native programs
use absolute or relative addressing instructions, along with register-
based addressing for jumps or function calls. In contrast, different
instruction set of Wasm employs indexing for memory accesses and
function calls, complicating the direct application of existing binary

https://orcid.org/0009-0009-7802-3003
https://orcid.org/0009-0000-4088-1592
https://orcid.org/0009-0003-4929-1478
https://orcid.org/0000-0003-4536-3537
https://orcid.org/0000-0003-1175-4409
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696410.3714622
https://doi.org/10.1145/3696410.3714622
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696410.3714622&domain=pdf&date_stamp=2025-04-22

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

static or dynamic instrumentation techniques [59]. Additionally,
the current binary rewriting techniques [23, 25] predominantly
focus on specific instruction sets and lack a universally applicable
framework across different architectures. 2) Detect legal memory
objects. Extracting the valid memory ranges from Wasm binaries
is also a non-trivial task. This complexity arises from the loss of
certain memory-related information during the compilation pro-
cess [18] and the unique memory structure of Wasm, which employs
a managed stack for handling specific variables [36].

In this paper, we propose WBSan, a Wasm Binary Sanitizer de-
signed to detect memory bugs and undefined behaviors, which can
be effectively integrated with existing binary-only Wasm fuzzers.
To enhance performance and reduce false positives, we identify
potentially problematic instructions (anchor instructions) through
the analysis of control and data dependencies. We implement Wasm
shadow memory in the target binary to more accurately define valid
memory boundaries. We use Wasm binary instrumentation [37] to
insert specialized dynamic checking patterns without affecting the
functionality of the Wasm binary. We create distinct detection pat-
terns for the four types of memory error and six types of undefined
behavior in Wasm, statically instrumenting the target binary with
these patterns. The instrumented detection patterns can identify
and locate erroneous instructions and call traces during execution
without disrupting the stack balance of Wasm.

We implement a prototype of WBSan and evaluate its bug detec-
tion effectiveness, performance overhead, and adaptability to the
current binary-only Wasm fuzzer. We compare bug-finding capabil-
ity of WBSan with two state-of-the-art Wasm binary checkers, Was-
mati [20] and fuzzm-canary [38], as well as three advanced native
binary sanitizers, Valgrind [48], QASan [29], and Retrowrite [25].
Although WBSan does not utilize source code information, we com-
pare it with source-level Wasm sanitizer (ASAN, UBSAN). WBSan
demonstrates superior accuracy in detecting memory bugs and
undefined behaviors in Wasm binaries, outperforming nearly all
existing native binary checkers. The instrumentation of WBSan
results in an acceptable increase in binary size, with the additional
overhead for real large projects being on par with the runtime over-
head associated with compiler-based instrumentation. We assess
the applicability of WBSan with a binary-only Wasm fuzzer, fuzzm,
across 11 real-world programs over 120 hours fuzzing. WBSan de-
tects more crashes and achieves higher code coverage compared to
the current fuzzing method.

WBSan achieve superior sanitization effects compared to the
current Wasm and native sanitizers. It can be integrated into current
fuzzing frame work for fuzzing Wasm binaries, offering strong
performance and compatibility, and can serve as a viable drop-in
replacements for source-based tools. In summary, this paper makes
the following contributions:

o We propose WBSan, the first Wasm binary sanitizer that leverages
static analysis and binary instrumentation to detect memory bugs
and undefined behaviors.

o We design unique detection patterns for six undefined behaviors
and four memory bugs frequently occur in Wasm. These patterns
can be easily instrumented in target binary and triggered runtime.

e We introduce Wasm shadow memory, which dynamically verifies
memory validity by inserting red zones around allocated memory

3312

Xiao Wu, Junzhou He, Liyan Huang, Cai Fu, and Weihang Wang

and hooking relevant memory access instructions. Wasm shadow

memory addresses the challenge of identifying valid memory

boundaries within Wasm binaries.

o We evaluate WBSan regarding its bug detection capabilities,
performance overhead, and applicability for Wasm binary-only
fuzzing, yielding the following results:

— WBSan achieves a higher bug detection rate across 10 CWEs in
14,278 test samples, surpassing all of the current Wasm binary
checkers and native binary sanitizers.

— WBSan can nearly match the detection rate of source-level
sanitizers without source code, and performs better on certain
types of bugs (float-cast-overflow and memory-leak).

— WBSan introduces acceptable binary size increase and runtime
overhead comparable to compiler-based instrumentation.

— WBSan finds more crashes (1,174 vs. 556) and higher code
coverage across 11 real-world programs compared to existing
Wasm binary fuzzer.

e We make WBSan publicly available [2].

2 Background and Motivation

In this section, we introduce the compilation pipeline of Wasm, the
role of sanitizers and their current development status in Wasm.
We highlight the shortcomings in the existing research field and
explain why there is a need for a binary-only sanitizer.

2.1 Webassmebly Binary

WebAssembly binaries are created by compiling from source code
in a high-level programming language, such as C or C++, with a
compiler. For example, Emscripten [60] is a prevalent C/C++-to-
Wasm compiler, which leverages Binaryen [10] and LLVM [13]
tools such as Clang [11] internally to generate a Wasm binary. Un-
like native x86/x64 binaries, Wasm binaries manage basic variable
types (integers, floating-point numbers) through a managed stack
maintained by the host sandbox, while more complex data types
(arrays, objects, etc.) are handled via an unmanaged stack [36]. Ad-
ditionally, memory access Wasm instructions and function calls
use indices [36] rather than relative or absolute addresses. The dif-
ferent program structure results in a significantly distinct analysis
approach for Wasm compared to traditional program analysis.

2.2 Binary Sanitizer

Binary sanitizers have proven to be an effective way of detecting
memory errors and undefined behavior in binaries without source
code. They can be used independently for program analysis [25]
or combined with fuzzing to automate bug detection process [23].
In recent years, there have been binary-only sanitizers targeting
memory errors and undefined behaviors in the native binary do-
main, both in user space [23, 25, 47] and the kernel [24, 43]. In the
Wasm domain, to our knowledge, Emscripten, as an LLVM-based
Wasm compiler, currently supports the integration of existing two
sanitizers [1], namely ASan and UBSan, during the compilation
process at the source code (UBSan) or generated LLVM-IR (ASan).
Both of these sanitizers require the source code of the program.

2.3 Why a binary-only Wasm Sanitizer

In applications where Wasm is utilized for smart contracts [22,
57, 61], IoT [39, 40], or in browsers [14], users often interact with

WBSan: WebAssembly Bug Detection for Sanitization and Binary-Only Fuzzing

Table 1: Current representative sanitizers in the Native and
Wasm binary domains.

Instrument . . .
Level Native Binary Wasm Binary
ASan [24], KAsan [3], ASan, UBSan (Em-
Source/IR UBSan([15], TySan [26] scripten [60])
Binary QASan [29], RetroWrite [25], WBSan

Valgrind [48], ...

compiled third-party Wasm modules without access to the source
code. Lehmann et al.Daniel et al. [36] demonstrated that compiling
a vulnerable third-party C library into Wasm could facilitate mali-
cious cross-site scripting attacks in browsers. The absence of source
code, combined with the fact that such vulnerabilities are typically
triggered by specific inputs, complicates their analysis and detec-
tion by current Wasm checkers. Existing research has developed
fuzzing [31, 38] and symbolic execution [32, 33, 44] frameworks
for Wasm binaries; however, not all bugs manifest as crashes or
hangs, making detection challenging. Table 1 outlines the current
landscape of binary sanitizer for both native and Wasm binaries. To
address this gap, we propose WBSan, which assists developers in
more effectively detecting memory bugs and undefined behaviors
in Wasm. WBSan can be integrated seamlessly with existing Wasm
fuzzing frameworks to trigger a broader range of bugs.

3 Design

This section details our approach to identifying memory bugs and
undefined behaviors in Wasm binaries. In section 3.1, we give an
overview of WBSan. Section 3.2 introduces WBSan, our binary
Wasm sanitizer, and describes its implementation details.

3.1 Overview of WBSan

We design WBSan, which effectively performs memory and unde-
fined behavior sanitizing through Wasm bianry instrumentation
for the target Wasm binary. The key accomplishments of WBSan
are as follows: (1) WBSan provides unique detection patterns for
the four common memory bugs and six undefined behaviors in
Wasm, enabling the dynamic acquisition of program internal states
and real-time error detection. (2) WBSan introduces Wasm shadow
memory, which dynamically captures valid memory boundaries
by inserting red zones in allocated heaps and stacks, along with
hooking relevant access instructions.

Figure 1 presents an overview workflow of WBSan, which con-
sists four key steps: First, WBSan employs static analysis to analyze
the control and data dependency of the given Wasm binary (@).
WBSan then hooks memory allocation and deallocation functions,
maintaining a Wasm shadow memory by inserting red zones in the
heap and stack. This Wasm shadow memory dynamically tracks
valid memory ranges at runtime and reports errors when illegal
memory accessed (@). Next, WBSan conducts pattern matching
analysis on all instructions susceptible to memory errors and un-
defined behaviors (anchor instructions). If an anchor instruction is
identified, WBSan designates it as a selective sanitization point. ().
WBSan instruments all selective sanitization points with corre-
sponding detection patterns, while ensuring the target Wasm binary
maintains stack balance and type correctness (®). The instrumented

3313

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

h Control&Data | | Wasm
M Sl > dependency | 1_—,| Shadow
I graph | memory

I
| Anchor |

|

|

| [Fi5saliget 27 | selective 1nstruft10ns |

} 1;’;“'5” 2 sanitization | Check |
132.8)

| s S| P

(d) Customized 1nstrumentat10n (c) Selective sanitization

Figure 1: Workflow of WBSan

Wasm binary can function independently for sanitization or be inte-
grated with automated detection tools, such as fuzzing, to enhance
the detection process.

3.2 WBSan Implementation

3.2.1 Control & Data dependency analysis. The objective of
WBSan is to detect memory bugs and undefined behaviors within
the target Wasm binaries. These issues are often not apparent in a
single instruction; rather, they necessitate specific control or data
conditions to be triggered. For instance, a use-after-free bug involves
three steps: allocating memory, freeing that memory object, and
subsequently reusing it. Triggering such a bug requires: 1) The
existence of a control flow path from allocation to deallocation to
usage; 2) Allocation, deallocation, and usage of the same memory
object. To facilitate a more effective analysis of these complex bugs,
it is essential to gather sufficient information regarding control and
data dependencies within the target Wasm binary.

In this work, we extract and analyze the control dependencies,
data dependencies, and function call information from Wasm bi-
naries to: 1) identify the instructions that require instrumentation,
and 2) minimize the performance overhead and errors in the instru-
mented samples. We construct the data dependence graph (DDG),
control dependency graph (CDG), and abstract syntax tree (AST) of
Wasm programs to obtain insights into control, data, and function
call dependencies. We leverage the C++ APIs provided by theWe-
bAssembly Binary Toolkit [16], which offers a mapping representa-
tion from Wasm binaries to C++ objects, enabling straightforward
analysis of Wasm functions, memory, and global variables. Our
analysis adheres to the standard definitions for DDG, CDG, and
AST, with the parsed graphs stored as C++ objects for subsequent
analysis. The parsed graphs will be stored in the form of C++ objects
and used for subsequent analysis.

3.2.2 Wasm shadow memory. Identifying valid memory bound-
aries for memory bugs poses significant challenges due to infor-
mation loss during the compilation process [18], complicating the
detection of such issues. To address this, we introduce Wasm shadow
memory, which inserts red zones in allocated heap and stack mem-
ory objects while hooking relevant memory access instructions to
dynamically ascertain valid memory boundaries during the execu-
tion of Wasm programs.

While shadow memory is a widely adopted solution in ASan [53],
its implementation in Wasm binaries necessitates careful consider-
ation of Wasm’s unique memory structure and allocation methods.

WWW ’25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Notably, the stack of Wasm is different as basic variable type is
mantained by the host [36]. Directly inserting red zones and storing
shadow memory within Wasm’s memory can disrupt the program’s
original functionality.

WBSan implements red zones by instrumenting memory allo-
cation/deallocation functions. For the stack, in Wasm supporting
WebAssembly System Interface (WASI), the stack pointer is the
first global variable. For non-WASI Wasm, simple heuristics can be
employed to identify the stack pointer [38]. Once identified, we sub-
tract the size of the red zone (defaulting to 16 bytes, configurable)
from the stack pointer. At each function exit, the red zone is unpoi-
soned, and the stack pointer is adjusted by 16 bytes. For the heap
allocation and deallocation, such as malloc, calloc, and free. The
instrumentation process involves allocating an additional 32 bytes,
comprising 16 bytes both before and after the heap region. Upon
completion of the allocation function, the preamble and postamble
areas are marked as poisoned in the shadow memory. The first
four bytes of the preamble store the size of the allocated space, fol-
lowed by another four bytes containing a magic value used during
deallocation. Subsequently, the internal heap region is unpoisoned
and made accessible, with the possibility of re-poisoning during
deallocation. When the instrumented store/load instructions ac-
cess memory, they check whether the target address is accessible
in shadow memory to ascertain if illegal memory read or write
requests occur.

To align with the memory structure of Wasm, WBSan maps
eight bytes of real memory address to one byte of shadow memory,
storing this shadow memory in an additional linear memory using
the multi-memory mechanism in Wasm [4]. We instrument each
memory access to verify whether it attempts to access an invalid
address within a redzone. If such an access is detected, an error code
is generated, and the program is terminated via an exit function.
Algorithm 3 and Algorithm 4 in Appendix show specific redzone
instrumentation methods.

3.2.3 Wasm selective sanitization. Existing sanitizers primar-
ily define memory errors and undefined behaviors from the per-
spective of source code. However, in Wasm binaries, there is no
direct one-to-one correspondence between binary instructions and
lines of code. Since Wasm only supports four basic variable types
(132, 164, f32, f64), more complex variable types, such as arrays and
structures, necessitate the use of Wasm unmanaged stack and linear
memory for representation and manipulation [36]. Consequently,
error points (sink) occurring in the source code cannot be directly
mapped to a single binary instruction or variable. Therefore, it is
essential to elucidate the specific manifestations of these memory
bugs and undefined behaviors at the Wasm binary level to enable
effective detection of these issues.

From the perspective of source code, identifying memory er-
rors or undefined behaviors is straightforward, as they typically
arise from specific operations on particular variables. However, in
the context of Wasm binaries, these issues are often attributed to
generic and repetitive instructions (e.g., load/store), many of which
are subject to control and data dependency constraints. Even simple
variable assignments transform into abstract operations involving
storing and loading from memory. Consequently, merely detecting
these instructions in Wasm binaries is impractical and prone to

3314

Xiao Wu, Junzhou He, Liyan Huang, Cai Fu, and Weihang Wang

(func $test (type 1) (param i32) (result i32)

Biéck

block
local.get a %-blg{k ‘
. 0CK
sanitization 10“'1 get b 3. local.get b
. --> 132 shl 4 i32.const 0
point €----- s i32lts
oo . 1
br 1 6. br_if ¢
end 7. local.get a
8. i32.const 3:
g 9. 132
i32.const 2¢ 10. EEJ%ES
local .set ¢ 11. local.get a
local.get d 12. i32.const 0
local.get e 13. 132.1ts
132 . add 14. br_if
1 1 £ 15. br 1
ocal .set 16.| end
e 17.| unreachable
end 18.|end
ce shift-overflow instrumentation
return
bl

Figure 2: Instrumented Wasm with shift-overflow check.

errors. Table 9 in Appendix presents a selection of sinks (error lo-
cations) for four types of memory bugs and six kinds of undefined
behaviors, illustrating how they manifest in both source code and
Wasm binaries.

To address this issue, we propose the Wasm selective sanitization
mechanism, which filters the sinks requiring instrumentation by
analyzing control and data dependencies for all anchor instructions.
WBSan selects sanitization points by applying our defined static
analysis passes and dynamically matching all instructions that could
lead to issues. Next, we will sequentially introduce the dynamic
matching patterns for various types of undefined behaviors and
analysis passes for memory bugs. Table 3 lists the matching patterns
and control and data dependency constraints we define for the six
types of undefined behaviors. The Appendix provides a detailed
description of the manifestations of six types of undefined behaviors
in Wasm and their corresponding instrumentation methods.

Unlike undefined behaviors, memory bugs often involve more
intricate control and data dependencies. Although Wasm shadow
memory can detect all memory bugs by hooking all memory ac-
cess instructions. WBSan provides a set of passes for analyzing
two types of memory bugs, use-after-free and memory-leak on the
control&data dependency graph. WBSan hook only the suspicious
load/store instructions after using defined analysis passes to re-
duce the overhead caused by instrumentation. Additionally, WBSan
applies PCA [42], a static analysis tool for memory—leak, assessing
whether the data has been properly released by analyzing whether
memory objects have been freed through control and data depen-
dency. WBSan designates the identified potential memory alloca-
tions and memory read/write instructions as sanitization points.
Algorithm 1 and Algorithm 2 in Appendix outline the detailed anal-
ysis algorithms corresponding to use-after-free and memory-leak.

3.2.4 Customized instrumentation. WBSan will only perform
instrumentation at the designated sanitization points after they
have been identified. WBSan maps all identified sanitization points
to their corresponding control and data dependencies in the target

WBSan: WebAssembly Bug Detection for Sanitization and Binary-Only Fuzzing

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Table 3: Matching patterns for undefined behaviors

Undefined behavior Anchor instruction(s) Matching pattern(s) Constraints
' %32.sh1/13?shr_s/ ®local.get a NG
Shift-overflow i32.shr_u/i64.shl/ ®@local.get b
. . [QEE)
i64.shr_s/i64.shr_u ®X
132.add/sub/mul/div ®local..get a (OENG)
A A @local.get b
i64.add/sub/mul/div ax ®—®
,,,,,,,,,,,,,,,,, o
. . @local.set a D=2 @=0
Integer-overflow %32.add/?32.3L.1b/ ®local.get b B—® @—®
i32.mul/i32.div @local.get c O 6@
®i32.strorel6/i32.store8
Implicit-i . h i32.load8u/load16u/ ®X @—d
mplicit-integer-sign-change 164.1oad8u/load16u/load32u @local.set a
$malloc/$dlmalloc/ X B
$memcpy/$memmove/$strncpy
®local.get a O—d
f32.demote_f64 @X 0@
®local.set b
block
@X D=0 @=0
Float-cast-overflow i32.trunc_f32/ @local.set a ®=®
i32.trunc_f64 end @-0 ®-0
®1i32.const I32_MIN
@local.set a
®local.get a
[©EE)
Null-dereference i32.1oad/i64.1oad ®@local.get b
®—-0
®X
®local.get a
.. [OEE)
Float-divide-by-zero f32.div/f64.div @local.get b
ox ®—-0

Note: Anchor instruction(s) indicate potential sink instructions in Wasm. If the anchor instructions for each type of undefined
behavior simultaneously match the patterns and corresponding constraints, they can be considered sanitization points for subsequent
instrumentation. X in Matching pattern(s) represents any specific anchor instruction corresponding to a particular undefined behavior.
@— @ indicates that @ has a data dependency on @, and @=@ indicates that there exists a path in control flow from @ to @.

binary, allowing for the retrieval of the operands of anchor instruc-
tions. It then inserts the appropriate detection mechanisms at these
points. We developed an instrumentation tool consisting of approxi-
mately 2K lines of Rust code, utilizing three Rust crates: Wasabi [37]
(for analysis), WasmParser [5] (for parsing), and WasmEncoder [6]
(for encoding and decoding Wasm).

WBSan performs instrumentation through a structured process:
First, it parses the Wasm binary into a byte stream and subse-
quently decomposes it into code segments, data segments, memory
segments, and other data objects using WasmParser and WasmEn-
coder. Next, WBSan identifies all sanitization points and selects
predefined check patterns for insertion. These patterns are meticu-
lously designed to maintain stack balance while preserving program
functionality. Finally, WBSan integrates the check patterns into the
relevant code segments and re-encodes the modified Wasm binary
using tools like Wasabi.

Figure 2 illustrates one instrumentation example. WBSan instru-
ments instructions to check whether the operands are greater than
32 (Line 7-10) and whether both the operands and backup operands
are positive numbers (Line 3-6 and Line 11-13). We have design
unique instrumentation methods for undefined behaviors and mem-
ory bugs as detailed in Table 10 in the Appendix for conciseness.

3315

Table 4: CWE Descriptions.

CWE(s) Cases Description
680 288 + 114 Shift-Overflow (SO)
190, 191 4,184 + 4,216 Integer-Overflow (IO)
195 576 + 576 Implicit-integer-Sign-Change (ISC)
681 54 + 54 Float-Cast-Overflow (FCO)
476 283 + 283 Null-Dereference (ND)
369 450 + 450 Float-Divide-by-Zero (FDZ)
Total 5,835 + 5,803 Undefined behaviors
415, 416 1,228 + 1,228 Use-After-Free (UAF)
401 1,268 + 1,268 Memory-Leak (ML)
122 3,460 + 3,460 Heap-buffer-Overflow (HO)
121 2,824 + 2,824 Stack-buffer-Overflow (SO)
Total 8,780 + 8,780 Memory bugs

Note: Cases include the filtered malicious samples plus their correspond-
ing benign samples.

4 Evaluation

4.1 Evaluation Target

To evaluate WBSan, we aim to address three research questions:

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Table 5: Target Real-World Programs.

Name Input Version LOC Files
Abc2mtexAbc2metx Alembic 1.6.1 4.63K 6
Libsndfile Audio 1.2.2 65.33K 3
Flite Text 2.2.0 583.38K 208
Flac Flac 1.3.2 59.25K 90
Libtomerypt Text 1.18.2 7439K 2
Http-parser Text 294 7.67K 7
Libpng Png 1635 40.88K 18
Jbig2dec Jbig 1.4.0 15.97K 24
Libtiff Tiff 4.3.0 87.38K 7
Openjepg Bmp/Png/... 15.1 207.26K 241
Pdfresurrect pdf 0.23 1.65K 2

RQ1 - Effectiveness: How effective is WBSan in detecting mem-
ory bugs and undefined behaviors compared to the existing Wasm
binary checkers, as well as source-level Wasm and native binary
sanitizers?

RQ2 - Applicability of Wasm fuzzing: Can WBSan be inte-
grated into existing Wasm fuzzing framework?

RQ3 - Performance overhead: Is the amount of runtime over-
head and code increase incurred by WBSan acceptable?

4.2 Experimental Setup

4.2.1 Dataset We employ the Juliet benchmark test suite from
NIST [49] as our dataset for detecting memory bugs and undefined
behaviors, which encompasses 118 CWE (Common Weakness Enu-
meration) types. As shown in Table 4, 13 out of 118 CWEs are
selected, which correspond to the four types of memory bugs and
six types of undefined behaviors with 29,198 test cases in total. To
ensure that all test samples can reliably trigger the target issues,
we removed non-determinism, which include: 1) Functions that use
random numbers for branching. 2) Functions labeled as good but
that still exhibit memory bugs or undefined behaviors. As shown
in Table 5, to test whether WBSan can effectively integrate with
existing Wasm fuzzing framework, we select 11 real-world pro-
grams from recent work [23, 38, 41] and github [7-9, 12]. These
projects encompass intended WebAssembly use cases such as data
processing, media file handling, and cryptography.

4.2.2 Environment We use Clang 10.0.0, Emscripten 3.1.45 (for
the Juliet test suite), and WASI SDK 20 (for real-world projects) as
the backend compilers. We perform our experiments on Ubuntu
20.04 LTS with an Intel(R) Xeon(R) 2.00GHz CPU, and 128GB RAM.

4.3 ROQ1: Effectiveness of Bug Detection

To comprehensively evaluate the detection capability of WBSan,
we tested bug detection capability on 12 CWEs corresponding to
6 types of undefined behavior and 4 types of memory errors, and
compared it WBSan with: 1) Two state-of-the-art Wasm binary bug
checkers, Wasmati and Fuzzm-canary. 2) Three prevalent Native
binary sanitizers, Valgrind, QASan and Retrowrite. 3) Two source-
level Wasm sanitizers, ASAan and UBSan, provided by Emscripten.
Table 6 presents the comparison results. Since the Juliet test suite
provides both bug-triggering samples and benign samples for the
same test case, Cases represents the total number of bad functions

3316

Xiao Wu, Junzhou He, Liyan Huang, Cai Fu, and Weihang Wang

plus good functions. FN represents False Negatives, which are mali-
cious samples incorrectly classified as benign, while FP represents
False Positives, which are benign samples incorrectly identified as
malicious.

4.3.1 Compared with Wasm binary checkers. We carefully
select Wasm bug checkers capable of detecting issues in Wasm
binaries, specifically Wasmati [20] and fuzzm-canary [38]. Wasmati
is a static analysis tool for detecting Wasm bugs that utilize a code
property graph to identify memory errors and undefined behav-
iors. Fuzzm-canary instrument Wasm binaries for detecting stack
and heap buffer overflows. WBSan achieves superior results in the
detection of six types of undefined behaviors with zero false nega-
tive rate (successfully detects all problematic samples) and only a
4.7% false postive rate. For four types of memory bugs, it exhibits a
16.8% false negative rate and a zero false postive rate. The detection
results of Wasmati across all CWEs are not ideal, as the analysis
passes provided by Wasmati are often limited to specific cases,
such as fixed function names and calling methods. Compared to
Fuzzm-canary, WBSan perfectly detects all heap-buffer-overflows
(0 < 67.2%) because Wasm shadow memory can dynamically check
the valid ranges of the stack or heap during execution, and it also
achieves a significant lead in stack buffer overflows (49.2% < 67.2%).

4.3.2 Compared with source-level Wasm sanitizers. Due
to information loss during the compilation process [23], source-
level sanitizers leverage richer information (specific types, array
or pointer boundary, etc.) compared to those operating directly on
binaries. Despite getting less code information, WBSan still out-
performs UBSan for undefined behaviors (0 vs. 0.3%), and achieves
a detection rate comparable to ASan for memory bugs (16.8% vs.
10.8%). This limitation also makes it difficult to determine whether
variables are signed in Wasm binaries and distinguish between ar-
ray and pointer, resulting in WBSan encountering 6% false positives
in integer-overflow and 49.2% false positives in stack-buffer-overflow.

UBSan cannot detect the precision loss when converting dou-
ble precision floating-point numbers (double) to single precision
floating-point numbers (float), and WBSan performs better in detect-
ing float-cast-overflow (0 vs. 40.1%). Since ASAN requires specific
exit points in the program, WBSan also achieves better results in
detecting memory-leak bug (7.1% vs. 74.5%).

4.3.3 Compared with native binary sanitizers. We carefully
chose state-of-the-art binary sanitizers, Valgrind [48], QASan [29]
and Retrowrite [25] to compare with WBSan for detecting memory
bugs. Because Wasm shadow memory can dynamically maintain
the valid memory range at runtime by inserting red zones, WBSan
performs with a false negative rate of 0, 7.1%, and 0 for use-after-
free, memory-leak, and heap-buffer-overflow respectively, which
all surpass three native sanitizers. WBSan also shows compara-
ble results in detecting stack-buffer-overflow among native binary
sanitizers (49.2% for WBSan and 48.9% for QASan).

WBSan: WebAssembly Bug Detection for Sanitization and Binary-Only Fuzzing

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Table 6: Memory bug and undefined behavior detection results on Juliet test suite compared to:1) Wasm binary checkers (Wasmati and Fuzzm-canary), 2)
Source-level sanitizer (ASan and UBSan) and 3) Native binary sanitizers(Valgrind, QASan and Retrowrite).

‘WBSan ‘Wasmati Fuzzm-canary ASan UBSan Valgrind QASan Retrowrite

CWE FN/FP FN/FP FN/FP FN/FP FN/FP FN/FP FN/FP FN/FP
680 (SO) 0/0 288(100%)/0 . . 0/0 - - -

190, 191 (I0) 0/254(6.0%) 4,126(98.6%)/0 - - 0/0 - - -

195 (ISC) 0/0 560(97.2%)/0 - - 0/0 - - -

681 (FCO) 0/0 54(100%)/0 - - 18(40.1%)*/0 - - -

476 (ND) 0/0 283(100%)/0 - - 0/0 - - -

369 (FDZ) 0/0 438(97.3%)/0 - - 0/0 - - -
Total 0/254(4.7%) 5,749(98.5%)/0 - - 18(0.3%)/0 - - -
415,416 (UAF) 0/0 1,194(97.2%)/0 - 0/0 - 22(1.8%)/0 82(6.7%)/0 337(27.4%)/0
401 (ML) 90(7.1%)/0 1,268(100%)/0 - 945(74.5%)/0 - 698(55.0%)/0 698(55.0%)/0 266(20.9%)/0
122 (HO) 0/0 3,400(91.2%)/76(2.0%) 1,899(67.2%)/0 0/0 - 1,997(57.7%)/0 532(15.4%)/0 1,826(52.8%)/0
121 (SO) 1,388(49.2%)/0 2,520(89.2%)/144(5.1%) 1,899(67.2%)/0 0/0 - 2,107(74.6%)/0 1,381(48.9%)/0 1,632(57.8%)/0
Total 1,478(16.8%)/0 8,382(95.5%)/220(2.5%) 3,798(43.3%)/0 945(10.8%)/0 - 4,824(55.0%)/0 2,693(30.7%)/0 4,061(46.3%)/0

Note: The first six rows of CWEs belong to undefined behaviors, while the last four belong to memory bugs. ASan and UBSan are source-level sanitizers provided by
Emscripten. * indicates UBSan can not detect double-to-float samples. FN indicates false negative and FP indicates false postive.

Answer: WBSan is currently the most effective Wasm bina-
ries bug detection tool for memory bugs (16.8% false negetive
and 0 false postive) and undefined behaviors (0 false nege-
tive and 4.7% false postive), achieving results comparable
to source-level tools (despite with less code information).
Compared to established binary sanitizers, WBSan achieves
leading results in three of four types of memory bug.

4.4 RQ2: Combine with Wasm Binary Fuzzing

To answer RQ2, we integrat WBSan with a Wasm fuzzing frame-
work fuzzm [38], and conduct 120 hours of fuzzing on 11 real-world
programs. Fuzzm incorporates canary instrumentation that imple-
ments heap and stack canary checks by inserting random numbers
at the memory boundaries, subsequently verifying these values
during deallocating and function returns.

Table 7 presents the results of fuzzing process, detailing crashes
detected, as well as the unique paths identified. Unique path refers
to the number of paths maintained by fuzzer that can trigger
higher code coverage; a larger value indicates greater code coverage
achieved during the fuzzing process. WBSan detects more crashes
than fuzzm (1,174 vs. 556) within the same duration of time. In five
out of the eleven programs where fuzzm was able to find crashes,
WBSan identifies a greater number of crashes (abc2mtex, libpng,
pdfresurrect, openjepg, flite). WBSan discovers 37 new crashes in
Jjbig2dec where fuzzm did not find any crash. WBSan finds more
unique paths than fuzzm (162,385 vs. 22,237) in programs where
crashes were detected, indicating higher code coverage because
WBSan can trigger more crashes, helping the fuzzer build a richer
seed corpus and guiding fuzzing to explore deeper code space.

Answer: WBSan can effectively integrates with existing
Wasm binary fuzzing framework, enabling the detection
of more crashes (1,174 > 556) and achieving higher code
coverage (593.96% more unique paths).

3317

Table 7: 120-hours Wasm binary-only fuzzing results on 11 real-
world programs.

Real-world Crash Unique path
program Fuzzm WBSan Fuzzm WBSan
Abc2metx 170 561 1,264 115,869
Flac 0 0 1,512 1,511
Jbig2dec 0 37 2,459 3,931
Libpng 118 135 761 853
Libtiff 0 0 1,727 1,785
Pdfresurrect 58 86 517 33,959
Openjepg 124 264 11,310 16,107
Libsndfile 0 0 152 152
Libtomerypt 0 0 53 53
Flite 86 91 1,997 2,064
Http-parser 0 0 503 501
Total 556 1,174 22,237 162,385

Note: Unique path represent the path found that can trigger unex-
plored code, with a larger value indicating higher code coverage.

Table 8: Average Execution Time

Average Execution Time (ms)

Program .

Original WBSan UBSan ASAan
Abc2metx 067 1.07(1.59x) 0.78(1.16X) 6.81(10.1x)
Flac 213 3.98(1.87x) 3.11(1.46x) 12.84(6.03x)
Jbig2dec 1.06 3.63(3.44x) 3.02(2.86x) 8.21(7.76X)
Libpng 033 0.72(2.21x) 0.65(2.00x) 1.28(3.90x)
Libtiff 16.96 33.11(1.95X) 18.48(1.09x) 37.15(2.19x)
Pdfresurrect 37.60 52.29(1.39x) 48.93(1.30x) 561.23(14.93x)
Openjepg 043 0.93(2.16x) 0.67 (1.56x) 1.99 (4.63x)
Libsndfile 344 519(151x) 4.93(1.43x) 10.27(2.99x)
Libtomerypt 3.24 4.85(150x) 6.47(2.00x) 9.70 (2.99x)
Flite 111.17 186.96(1.68x) 151.16(1.36X) 274.47(2.47x)
Http-parser 208 4.14(1.99x) 3.24(1.56x) 9.54(4.59x)
Average 1X 1.94X 1.62% 5.69%

Note: x denotes the multiple of the runtime compared to the Original.

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

4.5 RQ3: Performance Overhead

We assess the impact of WBSan on Wasm binary performance
overhead through two metrics: the binary size increase and the
runtime overhead. We obtain the binary size increase and runtime
overhead of WBSan using a standalone Wasm benchmark designed
for performance evaluation, Wasm-r3 [17]. We also compare the
average execution speed of 11 real-world programs with source-
level sanitizers UBSan and ASan.

4.5.1 Binary size increase. We evaluate the binary size increase
on 25 Wasm binaries in the Wasm-r3 benchmark. WBSan instru-
mentation results in an average increase of 72.1% in the size of
Wasm binaries, with a minimum increase of 50% and a maximum
of 210%. Figure 3 in Appendix lists the specific code size growth.

4.5.2 Runtime overhead. Table 8 shows the average runtime of
the original Wasm, WBSan, UBSan, and ASan after one thousand ex-
ecutions. Compared to uninstrumented Wasm binaries, the average
runtime of the Wasm instrumented with WBSan is approximately
1.94 times greater. The additional runtime overhead incurred by
WBSan is about 19.75% higher than that of UBSan and 65.91% lower
than ASan. The overhead associated with ASan is significantly
greater due to its extensive stack tracing [53]. Our analysis reveals
that stack tracing in ASan accounts for nearly 80% of the runtime,
as it provides detailed stack trace information through JavaScript
or Host runtime APIs, even for code that does not contain issues.

Answer: WBSan exhibits performance with acceptable file
size increase (72.1%) and runtime overhead (1.94X) compared
with compiled-based instrumentation (1.62X and 5.69X com-
pared to uninstrumented).

5 Discussion

5.1 WebAssembly and Sanitizer

As a newly emerging language, WebAssembly presents challenges
for analysis due to its different program architecture, and target
platforms. Existing binary Wasm fuzzing methods lack of sanitiza-
tion method for triggering different kinds of bugs. To address this,
WBSan attempts to analyze and detect these bugs at the binary
level. WBSan achieves a leading bug detection rate while main-
taining acceptable overhead. WBSan can be used as a standalone
sanitization tool for developers, or combined with fuzzing for more
in-depth WebAssembly testing without source code.

5.2 Threats to Validity

Internal validity. Our results may not lead to our implications
because we identify the anchor instructions by analyzing Wasm
binaries compiled with Emscripten and WASI SDK, but this does
not preclude the possibility of other anchor instructions.

External validity. Our results might not generalize to broader
samples. Our findings may depend on testing samples from the
curated Juliet test suite, which consists of small test cases. And a
wider variety of test datasets may yield different results.

Construct validity. We may not detect all the memory bugs and
undefined behaviors. Due to the irretrievable loss of source in-
formation, such as the distinction between signed and unsigned

3318

Xiao Wu, Junzhou He, Liyan Huang, Cai Fu, and Weihang Wang

integers in Wasm, even though we have attempted to introduce
Wasm shadow memory and use static analysis as mitigation.

5.3 Improvements and Future Work

WBSan can instrument Wasm binaries generated by the mainstream
Emscripten and WASI SDK compilers. Our future work aims to
enable WBSan to extract more program semantic information, al-
lowing for more accurate memory boundaries to be obtained from
binaries even when some compilation information is lost. The ap-
proaches used for recovering and extracting the semantic structure
of Wasm in these studies are ideas that we can draw upon [28].

6 Related Work

WebAssembly Analysis. Several works analyze the correctness
of the Wasm. Stiévenart et al. [56] manually analyze discrepancies
between the native and Wasm binaries on the Juliet benchmark.
Some work design dynamic analysis or symbolic execution frame-
works for WebAssembly [33, 37]. Wasabi [37] is a browser-based
dynamic analysis framework for Wasm binaries. Wasmati [20]
and Wasma [19] provide different kinds of graphs for static analy-
sis. Other works perform studies on real-world Wasm usage [34],
on Wasm compiler bugs [51], and on inlining optimizations in
Wasm [52].

Sanitizer. 1) Source/IR-level sanitizer. ASAan [53] and MSan [55]
are address sanitizers by instrumenting at IR-level and inserting
red-zone checks. UBSan [15] detects various undefined behaviors
by inserting corresponding check modes in the source code (AST).
EffectiveSan [27] employs dynamically typed checks for memory
bugs and undefined behaviors in C/C++. AddressWatcher [46] is a
memory-leak bug checker by tagging and tracking execution path.
2) Binary sanitizer. Valgrind [54] detects memory value errors using
red-zone insertion methods. Undangle [21] uses taint tracking for
memory bugs. RetroWrite [25] implements a binary address sani-
tizer through binary rewriting for static instrumentation. ZAFL [47]
is an instrumentation framework that achieves compiler-level per-
formance. MTSan [23] leverages ARM hardware features and bi-
nary rewriting to implement a high-performance memory sanitizer.
KUBO [43] is a static undefined behavior detector for the Linux
kernel. The above works are all focused on native programs and
kernels.

7 Conclusion

This paper presents the first WebAssembly binary sanitizer, WBSan,
designed for detecting memory bugs and undefined behaviors. WB-
San shows a great bug detection rate on the benchmark, making it
the most effective tool for bug detection for WebAssembly binaries
to date. WBSan integrates well with existing WebAssembly binary
fuzzing framework with acceptable performance overhead. WBSan
can effectively aid developers in detecting WebAssembly issues and
strengthening current binary WebAssembly fuzzing methods.

Acknowledgments

We thank the anonymous reviewers for their constructive feed-
back. This research was supported in part by the National Science
Foundation (NSF) under grants 2409005 and 2321444. Any opinions,
findings, and conclusions in this paper are those of the authors only
and do not necessarily reflect the views of our sponsors.

WBSan: WebAssembly Bug Detection for Sanitization and Binary-Only Fuzzing

References
[1] [n.d.]. https://emscripten.org/docs/debugging/Sanitizers.html.
[2] [n.d.]. https://github.com/WasmSanitizer/WasmSanitizer.
[3] [n.d.]. https://www.kernel.org/doc/html/latest/dev-tools/kasan.html.
[4] [n.d.]. https://webassembly.github.io/multi-memory/core/intro/introduction.
html.
[5] [n.d.]. https://github.com/bytecodealliance/wasmparser.
[6] [n.d.]. https://github.com/alex-gutev/wasm-encoder.
[7] [n.d.]. https://github.com/libtom/libtomerypt.git.
[8] [n.d.]. https://github.com/festvox/flite.
[9] [n.d.]. https://github.com/nodejs/http-parser.

[10] [n.d.]. Binaryen. http://webassembly.github.io/binaryen/.

[11] [n.d.]. Clang C Language Family Frontend for LLVM. https://clang.llvm.org/.

[12] [n.d.]. Libsndfile. https://github.com/libsndfile/libsndfile.

[13] [n.d.]. The LLVM Compiler Infrastructure Project. https://llvm.org/.

[14] [n.d.]. The security of WebAssembly. https://webassembly.org/docs/security/.

[15] [n.d.]. Undefined behavior sanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

[16] [n.d.]. The WebAssembly Binary Toolkit. https://github.com/WebAssembly/
wabt/.

[17] Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L Titzer, Sukyoung
Ryu, and Michael Pradel. 2024. Wasm-R3: Record-Reduce-Replay for Realistic and
Standalone WebAssembly Benchmarks. arXiv preprint arXiv:2409.00708 (2024).

[18] Adam Benali. 2022. An Initial Investigation of Neural Decompilation for We-
bAssembly.

[19] Florian Breitfelder, Tobias Roth, Lars Baumgértner, and Mira Mezini. 2023. Wasma:
A static webassembly analysis framework for everyone. In 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 753-
757.

[20] Tiago Brito, Pedro Lopes, Nuno Santos, and José Fragoso Santos. 2022. Wasmati:
An efficient static vulnerability scanner for WebAssembly. Computers & Security
118 (2022), 102745.

[21] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-

[22]

[23

[24

[25]

[26

[27

™
&

[29]

[30

(31

[32]

[33]

dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis. 133-143.

Weimin Chen, Zihan Sun, Haoyu Wang, Xiapu Luo, Haipeng Cai, and Lei Wu.
2022. WASALI: uncovering vulnerabilities in Wasm smart contracts. In Proceed-
ings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis. 703-715.

Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li, Ruoyu Wang, Haixin Duan,
Haoyu Wang, and Chao Zhang. 2023. MTSan: A Feasible and Practical Memory
Sanitizer for Fuzzing COTS Binaries. USENIX Security Symposium’23 (2023).
Mingi Cho, Dohyeon An, Hoyong Jin, and Taekyoung Kwon. [n. d.]. BOKASAN:
Binary-only Kernel Address Sanitizer for Effective Kernel Fuzzing. ([n. d.]).
Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA,
USA, 1497-1511. https://ieeexplore.ieee.org/document/9152762/

Gregory J Duck and Roland HC Yap. 2018. EffectiveSan: type and memory
error detection using dynamically typed C/C++. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 181—
195.

Gregory J Duck and Roland HC Yap. 2018. EffectiveSan: type and memory
error detection using dynamically typed C/C++. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 181—
195.

Weike Fang, Zhejian Zhou, Junzhou He, and Weihang Wang. 2024. StackSight:
Unveiling WebAssembly through Large Language Models and Neurosymbolic
Chain-of-Thought Decompilation. arXiv preprint arXiv:2406.04568 (2024).
Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. 2020. Fuzzing
binaries for memory safety errors with QASan. In 2020 IEEE Secure Development
(SecDev). IEEE, 23-30.

Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation.

Keno Hafller and Dominik Maier. 2021. Wafl: Binary-only webassembly fuzzing
with fast snapshots. In Reversing and Offensive-oriented Trends Symposium. 23-30.
Ningyu He, Zhehao Zhao, Hanqin Guan, Jikai Wang, Shuo Peng, Ding Li, Haoyu
Wang, Xiangqun Chen, and Yao Guo. 2024. SeeWasm: An Efficient and Fully-
Functional Symbolic Execution Engine for WebAssembly Binaries. In Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis. 1816—1820.

Ningyu He, Zhehao Zhao, Jikai Wang, Yubin Hu, Shengjian Guo, Haoyu Wang,
Guangtai Liang, Ding Li, Xiangqun Chen, and Yao Guo. 2023. Eunomia: Enabling
User-specified Fine-Grained Search in Symbolically Executing WebAssembly

3319

[34

[35

[36

®
=

[38

[39

[40

[41

[42]

[43

(48

[49

[50]

(52]

[53

[54

[57

[58

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Binaries. arXiv preprint arXiv:2304.07204.

Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An empirical study of
real-world webassembly binaries: Security, languages, use cases. In Proceedings
of the web conference 2021. 2696-2708.

Wenjun Huang and Marcus Paradies. 2021. An evaluation of webassembly and
ebpf as offloading mechanisms in the context of computational storage. arXiv
preprint arXiv:2111.01947 (2021).

Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything old is
new again: Binary security of { WebAssembly}. In 29th USENIX Security Sympo-
sium (USENIX Security 20). 217-234.

Daniel Lehmann and Michael Pradel. 2019. Wasabi: A framework for dynami-
cally analyzing webassembly. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems.

Daniel Lehmann, Martin Toldam Torp, and Michael Pradel. 2021. Fuzzm: Finding
memory bugs through binary-only instrumentation and fuzzing of webassembly.
arXiv preprint arXiv:2110.15433 (2021).

Borui Li, Wei Dong, and Yi Gao. 2021. Wiprog: A webassembly-based approach to
integrated iot programming. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, 1-10.

Borui Li, Hongchang Fan, Yi Gao, and Wei Dong. 2022. Bringing webassem-
bly to resource-constrained iot devices for seamless device-cloud integration.
In Proceedings of the 20th Annual International Conference on Mobile Systems,
Applications and Services. 261-272.

Shaohua Li and Zhendong Su. 2023. Finding Unstable Code via Compiler-Driven
Differential Testing. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
3.238-251.

Wen Li, Haipeng Cai, Yulei Sui, and David Manz. 2020. PCA: memory leak
detection using partial call-path analysis. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1621-1625.

Changming Liu, Yaohui Chen, and Long Lu. 2021. KUBO: Precise and Scalable
Detection of User-triggerable Undefined Behavior Bugs in OS Kernel. In Proceed-
ings 2021 Network and Distributed System Security Symposium. Internet Society,
Virtual. doi:10.14722/ndss.2021.24461

Filipe Marques, José Fragoso Santos, Nuno Santos, and Pedro Adéo. 2022. Con-
colic execution for webassembly. In 36th European Conference on Object-Oriented
Programming (ECOOP 2022). Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik.
Matteo Basso. 2022. Awesome Wasm. https://v8.dev/blog/liftoff.

Aniruddhan Murali, Mahmoud Alfadel, Meiyappan Nagappan, Meng Xu, and
Chengnian Sun. 2024. AddressWatcher: Sanitizer based Localization of Memory
Leak Fixes. In IEEE Transactions on Software Engineering. 1-15. doi:10.1109/TSE.
2024.3438119

Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson, and Matthew
Hicks. 2020. Breaking Through Binaries: Compiler-quality Instrumentation for
Better Binary-only Fuzzing. (2020).

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89-100.
NIST. [n.d.]. Juliet Test Suite for C/C++ 1.3. https://samate.nist.gov/SARD/
testsuites/112.

Mohammed Nurul-Hoque and Khaled A Harras. 2021. Nomad: Cross-Platform
Computational Offloading and Migration in Femtoclouds Using WebAssembly. In
2021 IEEE International Conference on Cloud Engineering (IC2E). IEEE, 168-178.
Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An empiri-
cal study of bugs in webassembly compilers. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 42-54.

Alan Romano and Weihang Wang. 2023. When Function Inlining Meets We-
bAssembly: Counterintuitive Impacts on Runtime Performance. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. { AddressSanitizer}: A fast address sanity checker. In 2012 USENIX
annual technical conference (USENIX ATC 12). 309-318.

Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Undefined
Value Errors with Bit-Precision.. In USENIX Annual Technical Conference, General
Track. 17-30.

Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In 2015 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 46-55.

Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. 2022. Security risks
of porting ¢ programs to WebAssembly. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing. 1713-1722.

Dong Wang, Bo Jiang, and WK Chan. 2020. WANA: Symbolic execution of wasm
bytecode for cross-platform smart contract vulnerability detection. arXiv preprint
arXiv:2007.15510 (2020).

wasmCloud Project Authors. 2022. WasmCloud. https://wasmcloud.com/.

https://emscripten.org/docs/debugging/Sanitizers.html
https://github.com/WasmSanitizer/WasmSanitizer
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://webassembly.github.io/multi-memory/core/intro/introduction.html
https://webassembly.github.io/multi-memory/core/intro/introduction.html
https://github.com/bytecodealliance/wasmparser
https://github.com/alex-gutev/wasm-encoder
https://github.com/libtom/libtomcrypt.git
https://github.com/festvox/flite
https://github.com/nodejs/http-parser
http://webassembly.github.io/binaryen/
https://clang.llvm.org/
https://github.com/libsndfile/libsndfile
https://llvm.org/
https://webassembly.org/docs/security/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/WebAssembly/wabt/
https://github.com/WebAssembly/wabt/
https://ieeexplore.ieee.org/document/9152762/
https://doi.org/10.14722/ndss.2021.24461
https://v8.dev/blog/liftoff
https://doi.org/10.1109/TSE.2024.3438119
https://doi.org/10.1109/TSE.2024.3438119
https://samate.nist.gov/SARD/testsuites/112
https://samate.nist.gov/SARD/testsuites/112
https://wasmcloud.com/

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

[59] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl. 2019.
From hack to elaborate technique—a survey on binary rewriting. ACM Computing
Surveys (CSUR) 52, 3 (2019), 1-37.

Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings
of the ACM international conference companion on Object oriented programming
systems languages and applications companion. 301-312.

Shuyu Zheng, Haoyu Wang, Lei Wu, Gang Huang, and Xuanzhe Liu. 2020. VM
matters: a comparison of WASM VMS and EVMS in the performance of blockchain
smart contracts. arXiv preprint arXiv:2012.01032 (2020).

[60]

[61]

Appendices

A Design for six types of undefined behaviors

Shift-overflow. Shift overflow happens when a bitwise shift oper-
ation exceeds the boundaries of the data type, potentially causing
unexpected results or data loss. In Wasm binaries, The shift op-
eration is represented by a direct instruction, shift, which pops
two elements, a and b, from the stack and shifts b by a positions.
Consequently, WBSan hooks all shift instructions in Wasm and
associates them with their operands using local instructions.

Integer-overflow. In Wasm binaries, integer overflow bugs can
arise in two scenarios: 1) Overflow of 32-bit (i32) and 64-bit (i64)
integers, represented by the basic Wasm variable types 132 and
164. 2) Overflow of 8-bit (char) and 16-bit (short) integers. For the
first scenario, WBSan hooks the arithmetic operation instructions
for 32-bit and 64-bit integers along with their operands, ensuring
that the corresponding operands can be located in the control&data
dependency graph for the instruction. For the second scenario, Wasm
truncates the upper 24 or 16 bits of 32-bit integers through memory
access and shifting, facilitating operations on 8-bit or 16-bit values.
WBSan analyzes data dependencies to identify possible truncation
or shifting operations, confirming that control flow paths support
these operations. If WBSan finds that a 32-bit integer operation’s
data dependency leads to instructions like i32.store16 (store the
lower 16 bits of a 32-bit value in memory) and a control flow path
exists, it marks this as a sanitization point.

Implicit-integer-sign-change. Implicit integer sign change
refers to the implicit conversion of integer types that can lead to
unexpected results due to the change in sign. In Wasm, such sign
conversions often occur during operations like i32.1oad8u, which
read smaller bitwise numbers from larger memory units. Since
smaller bit sizes may not be aligned with memory units, Wasm uses
shift instructions afterward to clear the upper bits of the retrieved
data, ensuring data cleanliness. WBSan hooks these five types of
instructions (as shown in the Table 3) and records the data flow
for subsequent instrumentation. Additionally, implicit integer sign
changes can occur in function calls that use unsigned parameters,
such as passing a negative number to the malloc function. WBSan
marks such function calls as sanitization points.

Null-dereference. WBSan hooks all load instructions and their
operands, and subsequently checks during instrumentation whether
the addressed location is zero.

Float-cast-overflow. Flow casting overflow values in floating-
point numbers occurs during type conversions , resulting in pre-
cision loss or overflow. The f32.demote_f64 instruction is used
for converting double-precision floating-point numbers to single-
precision in Wasm, and WBSan designates this instruction as a sani-
tization point. Additionally, i32. trunc_f32/f64 instructions to trun-
cate the floating-point values to integers. Wasm programs check

3320

Xiao Wu, Junzhou He, Liyan Huang, Cai Fu, and Weihang Wang

whether a floating-point number exceeds the range of integers; if
it does, they directly replace its value with the minimum integer,
which is -2,147, 483,648 (132_MIN). While this mechanism provides
a form of mitigation, it merely replaces the value when an over-
flow occurs without accompanying any error messages. WBSan
hooks this detection mechanism and marks the i32.trunc_f32 or
132.trunc_f64 instructions as sanitization points.

Float-divide-by-zero. Existing Wasm sandboxes report an error
when encountering integer division by zero withour checking the
float number. Therefore, WBSan hooks the f32.div and f64.div
instructions as sanitization points to detect floating-point division
by zero errors.

B Selective analysis passes for UAF and memory-
leak

Algorithm 1: Selective analysis pass for Use-after-free
N=[];
for m in malloc_functions do
for n1 in cfg.get_descendants(m) do
if n1.type == "Call" andn1 in free_functions and

ddg.reaches(n1,m) then
| InsertnlinN

end

end
end
for n2 inN do
for n3 in cfg.get_descendants(n2) do
if n3.type == "Load" orn3.type == "Store" then

if ddg.reaches(n3,n2) then
| Potential Use-after-free found.

end
end
end

end

Algorithm 2: Selective analysis pass for Memory-leak

Flag = False;
for m in malloc_functions do
for n1 in cfg.get_descendants(m) do
if n1.type == "Call" andn1 in free_functions and
ddg.reaches(n1,m) then
‘ Flag = True;
end
end
end
if Flag == False then
| Potential memory-leak found.
end

Function get_descendants(node) represents the set of all child
nodes obtained from the corresponding graph. Function reaches

WBSan: WebAssembly Bug Detection for Sanitization and Binary-Only Fuzzing WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia.

is used to determine whether a path exists between two points. D Instrumentation of Wasm shadow memory
Notably, both Algorithm 1 and Algorithm 2 detect potentially prob-
lematic Wasm binaries, designating these problematic instructions

as selective sanitization points for subsequent instrumentation. Algorithm 3: Stack Instrumentation Procedure

Input: Wasm function F, Redzone size RZ (default: 16 bytes)
Output: Instrumented function F’
Insert at the beginning of F:
SP « SP-RZ
foreach instruction instr in F do
if instr is a return instruction then
Replace instr with:
Unpoison(SP, RZ)
SP «— SP + RZ; Execute instr

C Wasm file size increase details

|
T

23 File Size Increase

N
o
N
o
N
HA

end

-
o
-
o
=
n
=
o
=
o
I
~

end

return Instrumented function F’

The factor of file size increase.

Algorithm 4: Heap Instrumentation Procedure

Function InstrumentedAlloc(size):

S5 C VoD ELYEOS0Q0CcCOUERUS oL Oy
2258555395285 88%53087 08¢ o :
SRFSZ2S2RL2A5%54° £88S ZEQ memory < OriginalAlloc(size + 32)
aotbs5T e85 ¥Yost o o ®Ay =ES
§8 ° % £ 2 52 ﬁa’g %% é) g preamble, userMemory, postamble «— memory, memory
= s s g oE + 16, memory + size + 16
£ 2 s . .
S Poison(preamble, 16); Poison(postamble, 16)
Store size and magic value in preamble
Figure 3: Wasm file size increase on 25 test cases of Wasm-r3. Unpoison(userMemory, size)

return userMemory
Function InstrumentedFree(ptr):
preamble « ptr - 16
if magic value in preamble is incorrect then
‘ Report double-free error
end
Unpoison(preamble, 16); Unpoison(ptr + size, 16)
Poison(ptr, size) OriginalFree(preamble)
Replace malloc, calloc with InstrumentedAlloc; Replace
free with InstrumentedFree

3321

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

E Source and Wasm sinks and Instrument logic

Xiao Wu, Junzhou He, Liyan Huang, Cai Fu, and Weihang Wang

Table 9: Source and Wasm binary sinks for memory bugs and undefined behaviors

Memory bug

Source sink (partial)

Wasm sink (partial)

Explanations

Heap-buffer-overflow
Stack-buffer-overflow

Use-after-free

intxbuffer=new int[10];

buffer[11]=1;

int buffer[10];
buffer[11] = 1;
data=malloc(...);
free(data);

printf("%s",data);

i32.store/i64.store
i32.1o0ad/i64.1load
i32.store/i64.store
i32.1load/i64.1load

i32.store/i64.store/
i32.1o0ad/i64.1load

Writing or reading unallocated memory (heap) in Wasm.

Writing or reading unallocated memory (stack) in Wasm.

Reading from or writing to deallocated memory objects.

Memory leak data=calloc(...); i32.store/i64.store/ Pointer overwrite/missing deallocation.
data=0; i32.1o0ad/i64.1load
Undefined behavior Source sink (partial) Wasm sink (partial) Explanations

Shift-overflow
Integer-overflow
Implicit-integer-sign-
change

Null-dereference

Float-cast-overflow

Float-divide-by-zero

data«100;

result=datazINT_MAX;

int data = -1;
malloc(data);

intxdata=NULL ;xdata=1;
(float)doubleNumber;

(int)floatNumber;

(int) (100.0/0);

i32.shl/i64.shl
i32.add/sub/mul/div/
i64.add/sub/mul/div
i32.10ad8u/i32.1load16u/
i64.1load8u/load16u/load32u
i32.store/i64.store
f32.demoteF64

i32.trunc_f32/f64

f32.div/f64.div

The operand cannot exceed the number’s width or be negative.
Arithmetic operations in Wasm have corresponding instruc-
tions.

It typically occurs when retrieving a shorter unsigned number
from 32-bit or 64-bit memory units.

The dereferencing of NULL is reflected in the store.

Double to float.

Double or float to int.
Wasm hosts inherently check integer division by zero; here,
we only detect floating-point division by zero.

Note: Source sink indicates the point in the source code where issue occur. Wasm sink indicates the location where they occur in the Wasm binary.

Table 10: Instrument logic for undefined behaviors

Undefined
behavior

Matching
pattern(s)

Instrumented logic

Description

Shift-overflow

®local.get a
@local.get b
®1i32.shift

b>0and0<a<w

w represents the size of the variable; an
132 integer has a width of 32 bits.

Integer-overflow

®local.get a
@local.get b
®132.add/sub/mul

Add: ((a>0Ab>0)Aa+b<0)==0
Sub: ((a>0A (=b) >0) Aa+(=b) <0) ==

Mul: a A (a*b) ==

We compile these logic checks into Wasm
functions, and directly insert these valida-
tion functions during instrumentation.

Implicit-integer-
sign-change

®1i32.1o0ad8u
@local.set a

(a<x24) > 24 ==

Similarly, for the 132.1oad16u, the shift op-
eration can be replaced with 16.

Float-cast-overflow

®local.get a
@f32.demote_f64
®local.set b

Promote(b) == a

Promote refers to the extension of a 32-
bit floating-point number to a 64-bit rep-
resentation, which is achieved using the
f64.promote_f32 in Wasm.

block

®1i32.trunc_f32
@local.set a

end

®1i32.const

I32_MIN

a == 132_MIN
or a == [64_MIN

Similarly for i64. trunc_f64.

®local.get a

The first parameter (a) of the load/store

Null-dereference @local.get b a== instruction indicates the target address
®i32.1oad/store and the second (b) specifies the value.
®local.get a - .
.. f32.div instruction performs the opera-
Float-divide-by-zero =~ ®@local.get b a== v u p P

®f32.div

tion of b/a.

Note: X in Matching pattern(s) represents any specific anchor instruction corresponding to a particular undefined behavior.

3322

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Webassmebly Binary
	2.2 Binary Sanitizer
	2.3 Why a binary-only Wasm Sanitizer

	3 Design
	3.1 Overview of WBSan
	3.2 WBSan Implementation

	4 Evaluation
	4.1 Evaluation Target
	4.2 Experimental Setup
	4.3 RQ1: Effectiveness of Bug Detection
	4.4 RQ2: Combine with Wasm Binary Fuzzing
	4.5 RQ3: Performance Overhead

	5 Discussion
	5.1 WebAssembly and Sanitizer
	5.2 Threats to Validity
	5.3 Improvements and Future Work

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	Appendices
	A Design for six types of undefined behaviors
	B Selective analysis passes for UAF and memory-leak
	C Wasm file size increase details
	D Instrumentation of Wasm shadow memory
	E Source and Wasm sinks and Instrument logic

