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ABSTRACT
WebAssembly is a recent web standard built for better perfor-

mance in web applications. The standard defines a binary code
format to use as a compilation target for a variety of languages,
such as C, C++, and Rust. The standard also defines a text represen-
tation for readability, although, WebAssembly modules are difficult
to interpret by human readers, regardless of their experience level.
This makes it difficult to understand and maintain any existing
WebAssembly code. As a result, third-party WebAssembly mod-
ules need to be implicitly trusted by developers as verifying the
functionality themselves may not be feasible.

To this end, we constructWASPur, a tool to automatically identify
the purposes of WebAssembly functions. To build this tool, we first
construct an extensive collection of WebAssembly samples that
represent the state of WebAssembly. Second, we analyze the dataset
and identify the diverse use cases of the collected WebAssembly
modules. We leverage the dataset of WebAssembly modules to
construct semantics-aware intermediate representations (IR) of the
functions in the modules. We encode the function IR for use in
a machine learning classifier, and we find that this classifier can
predict the similarity of a given function against known named
functions with an accuracy rate of 88.07%. We hope our tool will
enable inspection of optimized and minifiedWebAssembly modules
that remove function names and most other semantic identifiers.
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1 INTRODUCTION
WebAssembly (abbreviated Wasm) is the newest web standard

to arrive. Since appearing in 2015 [6], WebAssembly has created
huge buzz in the front-end world. Prominent tech companies, such
as eBay, Google, and Norton, adopt the technology in user-facing
projects to improve performance over JavaScript in use cases such as
barcode reading [35], pattern matching, and TensorFlow.js machine
learning applications [44]. Currently, all major browsers support
WebAssembly [29].

The language defines a portable and compact bytecode format
to serve as a compilation target for other languages such as C,
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C++, and Rust. This allows porting native programs to the web as
modules and executing them at near-native speeds. Rather than
being written directly, compilers such as Emscripten [4] and Wasm-
bingden [39] generate WebAssembly bytecode. WebAssembly also
defines a text format meant to make debugging easier. The text
format provides a readable representation of the module’s internal
structure, including types, memory limits, and function definitions.

Although readable, the text format still has a steep learning curve
compared with high-level languages. There are two characteristics
of WebAssembly that make it challenging for human readers to
interpret. First, WebAssembly has only four numeric data types,
i32, i64, f32, and f64, making the instruction sequences of several
applications, such as string manipulation and cryptographic hash-
ing, similar. Second, its stack machine design makes deriving the
value of a variable at a given location difficult. The stack must be
traced from a given location to identify the computed value at a spe-
cific code location. These two factors contribute to the difficulty of
understanding WebAssembly code. Source maps can be used to find
the corresponding functionality in a high-level source language.
However, many WebAssembly modules, including malicious mod-
ules, are delivered through third-party services where the source
code is not available [32]. For such cases, end users need to verify
a WebAssembly module’s actual functionality manually. Previous
work [14, 32] has looked at the purposes of WebAssembly samples.
However, there has been little work to help developers understand
the functionality implemented by a WebAssembly module.

To this end, we develop an automated classification tool,WASPur,
to help developers understand the intended functionality of individ-
ual WebAssembly functions within the applications. WASPur con-
structs abstractions on the semantic functionality of the module
that are resilient to syntactic differences, and these abstractions are
used in a machine-learning classifier to identify what functionality
the WebAssembly functions implement.

Specifically, our work makes the following contributions:
• We propose an intermediate representation (IR) to abstract
underlying semantics of WebAssembly applications that en-
ables syntax-resilient analysis.

• We construct a dataset of diverse WebAssembly samples
by crawling real-world websites, Firefox add-ons, Chrome
extensions, and GitHub repositories.

• We perform a comprehensive analysis of the collected We-
bAssembly samples. We identify the purposes of these sam-
ples and classify them into 12 categories.

• We develop an automated classification tool, WASPur, that
can accurately label a given WebAssembly function with
an appropriate function name according to its functionality
with an 88.07% accuracy rate.

1

https://doi.org/10.1145/3543507.3583235
https://doi.org/10.1145/3543507.3583235


WWW ’23, May 1–5, 2023, Austin, TX, USA Romano and Wang

2 BACKGROUND

int main() {
int b = 9;
int a = 9;
if(a == b){
return 1;

} else {
return 0;

}
}
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9

(func $func0 (result i32)
(local $var0 i32)
i32.const 0
i32.load offset=4
i32.const 16
i32.sub
tee_local $var0
...

)

101
102
103
104
105
106
107
108
109

0x00 0061 736d 0100 0000 0185 8080 8000 0160 .asm...........`
0x10 0001 7f03 8280 8080 0001 0004 8480 8080 ................
0x20 0001 7000 0005 8380 8080 0001 0001 0681 ..p.............
0x30 8080 8000 0007 9180 8080 0002 066d 656d .............mem
0x40 6f72 7902 0004 6d61 696e 0000 0acd 8080 ory...main......
0x50 8000 01c7 8080 8000 0101 7f41 0028 0204 ...........A.(..

(a) Source Code (c) WebAssembly Text Format

(b) WebAssembly Binary Format

Compile Translate

Figure 1: WebAssembly Code Sample

WebAssembly defines a compact bytecode format designed to
be efficiently transmitted across network calls. The standard also
defines a text representation of the bytecode to allow developers
to debug the code. Fig. 1 shows a WebAssembly module in the
bytecode and the text formats. The C++ code snippet shown in
Fig. 1(a) contains a main function that assigns two variables and
then compares their values. This code compiles to theWebAssembly
binary shown in Fig. 1(b). The binary format is how aWebAssembly
module is delivered to and compiled by browsers. TheWebAssembly
binary can be translated to its text format shown in Fig. 1(c), and
it shows examples of WebAssembly instructions, such as i32.sub
and i32.load.

WebAssembly modules have a clear structure defined. Each mod-
ule is composed of 10 sections that each describe different compo-
nents of the module:

(1) Types - This section defines all function types used within
the module, including the parameter and result data types.

(2) Functions - This section defines all WebAssembly functions
by their type, the local variables used, and the function body
comprised of a sequence of WebAssembly instructions.

(3) Tables - This section defines the function tables used as the
targets of indirect function call, i.e., using call_indirect.

(4) Memory - This section defines the properties of the linear
memory sections of the module.

(5) Globals - This section lists the global variables that are ac-
cessible across all functions in the module.

(6) Elements - This section lists the function indices that will be
used to initialize a specified function table.

(7) Data - This section lists the byte sequences that will be used
to initialize the specified linear memory sections.

(8) Start - This section defines whether any one function is
called once the module initializes.

(9) Imports - This section declares the functions imported from
JavaScript and will be called within aWebAssembly function.

(10) Exports - This section specifies which WebAssembly func-
tions are exported to the host JavaScript context so that they
can be invoked there.

Our classification approach focuses on the Functions section,
as this section contains most the procedural functionality imple-
mented through the WebAssembly instructions.
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Generator

Classifier

WebAssembly
 Binary

$func:

Predicted Function 
Name

Collected
Samples

Training
Samples

Abstraction Sequence 
w/ Function Name New Abstraction

Sequence w/o 
Name 

$func:
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Figure 2: WASPur System Overview

3 SYSTEM DESIGN
To help developers understand the functionality implemented

by WebAssembly modules, we develop WASPur, an automated
tool that leverages a semantics-aware intermediate representation
(IR) designed to capture the effects produced by WebAssembly
instructions. WASPur classifies the functions in a WebAssembly
module using two main components, as shown in Figure 2. The first
component, the Abstraction Generator, collects the abstractions
for all functions within the module to represent each function in
our IR (Section 3.1). The second component, the Classifier, uses
the sequence of abstracted IR units as input into a neural network
classifier (Section 3.3). The Classifier is trained on the names of
functions repeatedly found in WebAssembly modules and outputs
the probability that an inspected function belongs to the group of
similar named functions.

3.1 Abstraction Generator
The goal of our approach is to generate a high-level intermediate

representation (IR) that can recover semantic meaning from the
low-level WebAssembly bytecode. To produce the high-level IR,
WASPur is constructed on a core set of abstraction rules:

Definition 1 (Abstraction rule). An abstraction rule is a tuple
(𝑆, 𝑎, 𝐷𝑒 𝑓 ) where:

• 𝑆 represents one or more stack operations that simulate the
effects of a WebAssembly instruction on the virtual stack,

• 𝑎 is a transformation function that maps a WebAssembly
instruction to a C-like abstraction, and

• 𝐷𝑒𝑓 is the definition set of all alive variables at the current
code location.

We present abstractions rules that abstract WebAssembly byte-
code into five groups:

(1) Numeric Instructions: Perform numeric computations on
stack values.

(2) Parametric Instructions:Manipulate virtual stack without
additional computations.
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Table 1: Abstraction Rules.

Instruction Stack Simulation1,2,3 Definition Set Update Abstraction

Numeric Instructions

i32.const 𝑐 push(𝑐)

i64.mul
pop()→𝑒1, pop()→𝑒2,
push(𝑒1 × 𝑒2)

f32.eq
pop()→𝑒1, pop()→𝑒2,
push(𝑒2 = 𝑒1)

f64.max
pop()→𝑒1, pop()→𝑒2,
push(𝑚𝑎𝑥 {𝑒1,𝑒2})

i32.eqz
pop()→𝑒

push(𝑒 = 0)

Parametric Instructions

drop pop()→𝑒

Variable Instructions

get_local 𝑣
push(𝑣)

get_global 𝑣
set_local 𝑣

pop()→𝑒 Def(𝑣) = Def(𝑣) ∪ {𝑒𝑙 } 𝑣 = 𝑒 ;
set_global 𝑣

tee_local
pop()→𝑒 ,

Def(𝑣) = Def(𝑣) ∪ {𝑒𝑙 } 𝑣 = 𝑒 ;
push(𝑒)

Memory Instructions

i32.load pop()→𝑒 , push(R32(𝑒))

i32.store
pop()→𝑒1, Def(𝑒2) = Def(𝑒2) ∪ W32(𝑒2,𝑒1);pop()→𝑒2 {addr(𝑒1)𝑙 }

i32.store8
pop()→𝑒1, Def(𝑒2) = Def(𝑒2) ∪ W8(𝑒2,𝑒1);pop()→𝑒2 {addr(𝑒1)𝑙 }

Control Instructions

loop 𝑔: 𝑔:
if I pop()→𝑒 if (𝑒) {
br 𝑔 goto 𝑔;
br_if 𝑔 pop()→𝑒 if (𝑒) goto 𝑔;
block 𝐵 𝐵: {
end }

call 𝑓
paraNum(𝑓 )→𝑛,

𝑓 (𝑒1,𝑒2,...,𝑒𝑛 );for(𝑖 = 𝑛; 𝑖 > 0; 𝑖--)
pop()→𝑒𝑖

call_indirect

pop()→𝑒 ,

𝑓 (𝑒1,𝑒2,...,𝑒𝑛 );
paraNum(𝑒)→𝑛,
for(𝑖 = 𝑛; 𝑖 > 0; 𝑖--)
pop()→𝑒𝑖

1. retLen() gives the number of return values (either 1 or 0) of current function.
2. paraNum(𝑓 ) returns the number of return values of function 𝑓 .
3. func(𝑒) returns the function name by checking the function table with index 𝑒 .

(3) Control Instructions: Change the control flow of the pro-
gram using values from the stack.

(4) Variable Instructions: Assign and fetch the local variables.
(5) Memory Instructions: Assign and fetch memory values.

Table 1 shows a subset of WebAssembly instructions and how we
abstract each group of instructions.

3.1.1 Numeric Instructions. WebAssembly execution is based on a
stack machine architecture, so our abstraction models WebAssem-
bly instructions based on their effects on the stack. Modeling the
stack allows our abstractions to capture the data and control flows

of the program. The first group of abstractions models the instruc-
tions that perform numeric computations on stack values. For ex-
ample, the instruction “i32.const 𝑐” pushes a 32-bit constant 𝑐
onto the stack. The prefix i32 indicates that the data type of 𝑐 is a
32-bit integer. Similarly, a 64-bit integer is prefixed by i64, and a
32-bit floating point number is prefixed by f32. We capture these
instructions by applying them to symbolic values representing the
parameters, variables, and loaded values.

3.1.2 Parametric Instructions. This group includes two WebAssem-
bly instructions, “drop” and “select”. These instructions can drop
a value from the stack without performing other computations. We
model these instructions through their effects on the virtual stack.

3.1.3 Control Instructions. WebAssembly supports control flow
constructs such as if, loop, and block. Conditional statements
such as “if 𝐼” are abstracted to “if (𝑒)”, where the condition 𝑒 is
popped from the stack. The abstractions defined within the scope
of the if block are stored in a list of inner abstractions.

We model the “block” and “loop” instructions using “block”
and “for” abstractions, respectively. Both abstractions define a
label, e.g., “loop 𝑔:”, that encapsulates a block of code. The ‘br 𝑔”
and “br_if 𝑔” instructions control whether the control flow will
go to the beginning of the labeled block. To model this behavior,
we also store any abstractions defined with the blocks into the list
of inner abstractions. The “for” abstraction additionally contains
the condition that controls whether the loop terminates.

“call” instructionsmake direct calls with explicit function names,
whereas “call_indirect” instructions make indirect calls using
an index to the function table. We model both instructions with
corresponding “call” and “call_indirect” abstractions.

3.1.4 Variable Instructions. Variable instructions can either load
values from local or global variables or assign values to them. To
model the instructions loading variables such as “get_global”, we
use symbolic values to represent them on the stack. To model the
instructions that assign values to variables, such as “set_local”,
we use the “set” abstraction to record information on the targeted
variable and assigned value. We also record the history of variable
assignments in the variable definition set. For example, to handle
the operation “set_local 𝑣”, our definition set would be updated
to reflect that the local variable 𝑣 currently contains the value 𝑒 .

3.1.5 Memory Instructions. Similar to the variable instructions,
there are memory instructions that can load (e.g., “i64.load”) or
store (e.g., “i32.store”) values in the linear memory. We model the
loading instructions using symbolic values to represent the value
referred to at a specific memory index. We model the memory store
instructions by constructing a “store” abstraction that tracks the
targeted memory location and value. We also record the history
of these memory stores in the variable definition set. For example,
“i32.store8” would be abstracted to “W8(𝑒2, 𝑒1)”, where 𝑒2 is the
source address and 𝑒1 is a destination address. The definition set is
updated to reflect that the memory index 𝑒2 contains the value 𝑒1.

We observe that WebAssembly applications typically use consec-
utive memory copy operations, so we merge consecutive “store”
abstractions into a single abstraction based on two rules. Sequential
writes to consecutive memory buffers are simplified to a “memcpy”
abstraction by inferring the starting address, destination address,

3



WWW ’23, May 1–5, 2023, Austin, TX, USA Romano and Wang

and memory length to copy from the “store” abstractions. The
semantics of writing to consecutive memory buffers can also be
realized by using a loop to write each byte and similarly inferring
the addresses and memory size to copy.

3.2 Applying Abstractions
To apply our abstractions, we first build an intraprocedural con-

trol flow graph (iCFG) for each function. This graph contains the
abstraction sequence constructed by traversing the instruction se-
quence of a single function. A small set of transformations are
applied to condense abstractions, such as combining consecutive
repeated operations into loops.

After the iCFG of each function is built, we then construct an
interprocedural CFG (ICFG) by linking individual iCFGs on “call”
abstractions. A separate ICFG is built for each function, with the
desired function being used as the starting point for graph traversals.
We limit the depth to two levels of calls to prevent cycles caused
by recursive functions. For “call_indirect” abstractions, we link
all functions matching the declared function type.

3.3 Classifier
Using the IR constructed from the program abstractions, the

classifier determines the functionality of a function by predicting
the function name of a function with a similar abstraction trace.
We describe the details of how the abstractions are encoded and
how the classifier is trained in the following sections.

3.3.1 Encoding Abstractions as Features. The classifier uses a neural
network model to predict labels for the given abstraction sequence.
The input needs to be encoded into a numeric representation to
be fed into the model. Our input into the neural network is the
sequence of abstractions produced when traversing the interpro-
cedural control-flow graph (ICFG) of the targeted function. The
sequence is then treated as a string of the abstraction types, e.g.,
“set set for store if ...” This string is embedded as a numeric
vector with an integer representing one of the eight abstraction
types we define. The vector requires a predefined sequence length,
so abstraction traces longer than this length are truncated.

3.3.2 Training the Classifier. The classifier is trained on the gener-
ated function abstraction sequences of the collected WebAssembly
files. To train and evaluate the classifier, theWebAssembly functions
with non-minified names are grouped together by their abstraction
sequences. We use these function names as the labels for classifi-
cation. The label strings are encoded using a multi-hot encoding
scheme to map each label to an index of a numeric vector. The
classifier outputs a vector whose floating-point values correspond
to the probabilities that a certain label should apply to the sample.
The classifier is trained and evaluated by splitting the dataset into
a training set of 80%, a validation set of 10%, and a test set of 10%.

3.3.3 Neural Network Architecture. The neural network underly-
ing our classifier takes in the abstraction sequence as input. An
embedding layer encodes the abstraction sequence string as a nu-
meric vector of at most 250 integers. Each hidden layer uses the
fully connected Dense layer type provided by TensorFlow [1]. The
output layer consists of 189 units that use the SoftMax activation
function. The units in this layer correspond to the indices of the

label values predicted by the network. The network is configured to
use the cross-entropy loss between true and predicted labels as the
loss function, and it uses the Adam gradient descent method [19]
as the optimization algorithm. We configure the network to use 30
iterations when training the model.

The classification performance of our model depends on using
appropriate values for the hyperparameters. We tune the hyperpa-
rameters of the neural network model to identify a suitable config-
uration for predicting labels from the given abstraction sequence
input. To identify the optimal number of hidden layer units, acti-
vation function, and number of layers for our model, we construct
our neural network using different values of hyperparameters to
identify the highest accuracy value that our classifier can attain.

4 DATA COLLECTION AND HANDLING
We collect WebAssembly samples to build the training and eval-

uation datasets for our neural network model. We describe our
process for collecting a diverse set of WebAssembly binary samples
from various sources in the following section. We also describe
these samples in detail and the use cases that they implement.

4.1 Data Acquisition
We collect WebAssembly samples from four sources: (1) Alexa

top 1 million websites, (2) 17,682 top Chrome extensions sorted
by installed users, (3) 16,385 popular Firefox add-ons sorted by
installed users, and (4) 112 million GitHub repositories.

4.1.1 Alexa Top 1 Million Websites. We crawled the Alexa top 1
million websites from October 2018 to May 2020. For each website,
we visited the homepage and all first-level subpages. We decided
to limit the crawling to first-level subpages rather than all sub-
pages because a full scan would require hours for complex websites
that include thousands of subpages. To download WebAssembly
binaries running on a page, we modified the Chromium browser
version 77 with the “–dump-wasm-module” flag enabled to dump
any WebAssembly module the browser decodes [50].

4.1.2 Chrome Extensions. We get WebAssembly samples from
Chrome extensions by running all extensions with more than 1,000
users through the modified Chromium browser. We crawled the
Chrome extensions from March 25 to March 30, 2019. It took one
day to download all the Chrome extensions and four days to assess
each extension. This resulted in a total of 17,682 Chrome extensions.

4.1.3 Firefox Add-ons. Samples from Firefox add-ons were ob-
tained by crawling the official Firefox Add-ons website to download
the .xpi add-on archives. The .xpi archives were scanned for the
files ending with “.wasm”. We crawled the Firefox add-ons on July
30, 2019. It took one day to download and scan all the add-ons. In
total, 16,385 Firefox add-ons were analyzed.

4.1.4 GitHub Repositories. We obtained WebAssembly samples
from the Public Git Archive dataset [27] using the pga command line
tool [45]. We specified the “--lang” filter to obtain the repositories
using WebAssembly as the language filter. We then scanned these
repositories using the GitHub REST API [15] to find and download
all WebAssembly binary files (.wasm) [15]. This process took one
day and was performed on October 3, 2019.
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4.2 Statistics of Collected Data
We collect two different datasets: (1) Dataset for WebAssembly

Binaries and (2) Dataset for WebAssembly GitHub Repositories.

Table 2: Statistics of Collected WebAssembly Binaries.

Source # of # of Samples # of
Samples Using Wasm Wasm

Websites 1,000,000 3,154 4,520
Chrome Ext. 17,862 55 90
Firefox Add-ons 16,385 30 43
GitHub 112,663,634 435 2,116

# of Wasm in Total 3,397 6,769
(Distinct) (1,829)

4.2.1 WebAssembly Binaries. Table 2 shows the number of col-
lected WebAssembly binaries for each of the sources crawled. It
shows the number of crawled apps/projects from each source, the
number of apps/projects that used WebAssembly, and the number
of WebAssembly programs identified from each source. In total,
we identified 6,769 WebAssembly samples from all sources. These
applications/projects can use multiple WebAssembly files to im-
plement complex use cases, thus there were more WebAssembly
samples identified than the number of apps/projects. Of the 6,769
WebAssembly modules collected, 1,829 of the modules are unique.

Table 3: GitHub Repository Purposes

Category Subcategory (# of Repos) Total
WebAssembly Project

Application

Game (25), Graphics Library (19),

97
Cryptography (10), Numeric Processing (6),
Visualization (4), Blockchain Wallet (3),
Machine Learning (3), Sound Processing (3),
Compression (2), VR (1), Others (21)

Dev. Tools Development Tools (31) 31
WebAssembly WebAssembly Examples (98), Benchmark (10), 111Examples Exploit POC (3)

Total 239
Projects for WebAssembly Support
WebAssembly Browser Engine (8), WebAssembly Runtime (41), 68Runtime WebAssembly Interpreter (13), WebAssembly VM (6)
Blockchain Blockchain Platform (36) 36
Frameworks Application Framework (29) 29
Compiler WebAssembly Compiler (26) 26
Toolkit WebAssembly Toolkit (24) 24
Documentation Documentation (13) 13

Total 196

4.2.2 GitHub Repositories. Among the 112M GitHub repositories,
we identify 435 repositories relevant to WebAssembly. Table 3
shows the results of our manual inspection including the purposes
of the repositories. TheseWebAssemblyGitHub repositories include
239 repositories that are built with WebAssembly (97 applications,
31 development tools, and 111 WebAssembly examples) and 196
repositories that provide WebAssembly support (68 WebAssem-
bly runtimes, 36 blockchain projects, 29 frameworks, 26 compilers,
24 toolkits, and 13 documentation repositories). Additionally, we
identified finer gained subcategories within the groups, such as 25
games and 3 machine learning applications within the Applications
group and 8 browser engines and 6 WebAssembly virtual machines
within the WebAssembly Runtime group.

4.3 Module-Level Categorization
Identifying the category (i.e., the intended purpose) ofWebAssem-

bly programs found in the wild is crucial for understanding the
landscape. To discover the intended purposes of the samples, we
manually inspect and label the files by relying on four types of
information obtained from the WebAssembly binaries: import func-
tion names, export function names, internal function names, and file
source. As shown in Table 4, we categorize the samples into 12
distinct categories. We find a variety of these categories across all
the sources of WebAssembly samples that we investigated. For each
category, we present the counts of modules found in each source
location, statistics on the sizes of the text files, and statistics on the
sizes of the binary files in Table 5.

Function names in the modules usually carry informative de-
scriptions of the module’s use case. For a source file in a GitHub
repository, the file’s use in the context of the project is used to iden-
tify the category features. For browser extensions, we looked at the
extension’s description page and the WebAssembly and JavaScript
files bundled in the extension archive to identify what the exten-
sion’s purpose was and what role the WebAssembly module played.
In total, we produce more than 204,619 signatures from the im-
port, export, and internal function names of the modules. Table 6
summarizes these signatures.

Table 4: WebAssembly Use Case Categories.

Category Description
Compression Performs data compression operations.
Cryptography Performs cryptographic operations (e.g., hashing).
Game Implements stand-alone online games.
Text Processing Performs text or word processing.
Image Processing Analyzes or edits images.
Numeric Provides commonly used mathematical or
Processing numeric functions.
Support Test Stub Probes environment for WebAssembly support.
Standalone Apps Independent standalone programs.
Auxiliary Provides commonly used data structures
Library or utility functions.
Cryptominer Performs cryptocurrency-mining operations.
Code Carrier Stores JavaScript/CSS/HTML payloads.
Unit Test Ensures conformance to language specification.

4.4 Function-Level Categorization
Understanding the purposes of the individualWebAssembly func-

tions comprising the module can also help developers understand
thewholemodule as well.WebAssembly is a compiled language that
usually undergoes compiler optimizations. Inmany cases, these opti-
mizations minify the function names of theWebAssembly functions
defined in the module, as well as in the accompanying JavaScript
code. We observe 923 modules of 1,829 total modules use mini-
fied function names, removing a key piece of information from
developers seeking to understand the module functionality.

To identify the intended functionalities of WebAssembly mod-
ules, we leverage the presence of function names in the collected
modules. These function names can indicate the presence of C,
C++, Rust, etc... common utilities, such as malloc and strcmp. Other
function names indicate that the functions implement application-
specific behavior, such as the names AutoThresholdImage and IsPDF.
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Table 5: Categories of the WebAssembly Binary Samples.

Category # of # of Chrome # of Firefox # of GitHub LOC (Wat) Wasm File Size (KB)
Websites Extensions Add-ons Repos min max avg min max avg

Compression 1 6 10 5 581 284,910 19,090.91 1.20 875.48 64.02
Cryptography 1,348 51 2 48 73 184,318 5,671.93 0.22 433.70 10.36
Numeric Processing 516 2 0 40 8 18,518 358.43 0.04 2,076.63 4.47
Game 279 16 0 22 413 13,190,961 6,447,261.13 0.89 34,957.01 15,638.83
Text Processing 65 2 0 0 511 1,071,478 19,154.64 1.06 2,512.93 47.91
Image Processing 32 0 1 33 67 1,073,067 98,587.79 0.17 2,985.78 240.55
Standalone Apps 15 4 8 76 6 2,590,432 346,139.82 0.05 7,483.21 937.00
Cryptominer 900 0 0 3 20,770 81,124 44,789.89 43.82 163.56 96.39
JavaScript Carrier 99 0 0 0 9 9 9 0.25 0.60 0.42
Auxiliary Library 7 9 22 86 7 485,928 27,773.30 0.05 1,577.53 104.77
Support Test Stub 1,258 0 0 40 1 31 5.82 0.01 0.36 0.03
Unit Test 0 0 0 1,763 1 1,705,804 9,746.07 0.01 5,478.25 30.49
Note: Cells in gray indicate the categories have the top four (or five for the websites) applications.

Table 6: # of Category Features and Examples for Each Category.

Category Export Functions Import Functions Internal Functions File Source
(# of Features and Examples) (# of Features and Examples) (# of Features and Examples) (# of Features and Examples)

C1. Auxiliary Library 193 matches 261 create_element_Document 2,284 GetStrOffset 45 Https Everywhere
C2. Compression 9 lz4BlockEncode 0 32 decompressFunc 19 gorhill/uBlock
C3. Cryptography 1,273 pbkdf2_generate_block 54 BlockHash 16 _sphincsjs_public_key_bytes 953 shanlusun/blockchain
C4. Cryptominer 90 _cryptonight_hash_variant_1 0 52 _cryptonight_destroy 769 bitcoin.co.ua
C5. Game 4,170 Runtime_Animation 2,319 mousedown_callback 60,025 _SparseTextureGLES 168 juegosfriv3.com
C6. Text Processing 48 DjiSpellcheckerWasmMain 0 945 expand_rootword 64 Co:Writer Universal
C7. Image Processing 451 _build_gaussian_coefs 66 draco_receive_decoded_mesh 2,653 decode_RGB565 52 BabylonJS/Website
C8. JavaScript Carrier 1 data 0 0 11 wpost.co
C9. Numeric Processing 40 div_s 3 env.logit 65 sqrt 545 Moonlet Wallet
C10. Support Test Stub 4 test 1 SomeOtherFunction 0 1,273 codeburst.io
C11. Standalone Apps 22,621 BarcodeReader 6,198 pthread 15,069 dlmalloc 61 01alchemist/TurboScript
C12. Unit Test 3,683 good 376 wasi_unstable.fd_renumber 77,581 testFunctionPi 76 xtuc/webassemblyjs
Note: Columns in gray present # of features with examples presented on their right-side columns. If there is no features present on a particular column, there is no example.

We create labels from the names of functions that appear in at least
two unique modules. We also condense similar function names, e.g.,
$malloc, $_malloc, and $memory.allocate, into a single label repre-
senting the group, e.g., malloc. We obtain 189 different function
categories through this process. Function names appearing across
multiple module categories indicate that these functions implement
common utilities.

5 EVALUATION
We train and evaluate WASPur on the dataset of 1,829 unique

WebAssembly files were collected from the Alexa top 1 million
websites, Chrome extensions, Firefox add-ons, and GitHub reposi-
tories. To use these samples, we extract every function and build
the abstraction IR for each function. We then encode the abstraction
sequence as a numeric vector to use in the neural network model.
To identify the neural network hyperparameters that provide the
best predictive power, we measure the classification metrics of
our model using different numbers of hidden units within a layer,
different activation functions, and different numbers of layers.

5.1 Function Name Dataset
To evaluate WASPur, we use this dataset of WebAssembly mod-

ules to build a dataset of individual WebAssembly functions. For
each function, we record its name, abstraction traversal sequence,
and its parent module. We then use the function name to provide a
label for the function, according to our description in Section 4.4.
Our function dataset consists of 11,524,686 functions extracted from
the 1,829 unique WebAssembly files. Of these functions, 151,662

have function names while 11,373,024 have no function names be-
cause of optimization or minification steps. We use the 151,662
labeled functions to train our classifier.

5.2 Classifier Setup
WASPur is built on Node.js [8] and Python [9]. The system con-

tains two components. The Abstraction Generator component is
implemented as a Node.js application, while the Classifier compo-
nent is implement using Python. The classifier uses a neural net-
work model constructed using the Keras [48] and TensorFlow [1]
libraries. The classifier models are trained and evaluated on a laptop
with an Intel Core i7 CPU@2.1GHz and 64GB of RAM.

5.3 Classification Results

32 64 128 256 512 1024 2048 4096 8192
Number of Units

0.775

0.800

0.825

0.850

0.875

Va
lu

e

Accuracy
F1 Score

Figure 3: Accuracy and F1 Score using Different Numbers
of Hidden Units in a single layer with a Linear Activation
Function
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5.3.1 Testing Different Numbers of Hidden Units per Layer. In a
neural network, each layer consists of hidden units that each have
associated weights, biases, and input values from previous layers.
Each hidden unit uses the activation function to emit a value for
the units in the next layer to process. Adding more hidden units
allows for the learned weights to model underlying relationships
in the data more closely, but it increases the risk of over-fitting
to the training data and generalizing to new data poorly. To find
an optimal number of hidden units to use, we evaluate different
numbers of hidden units on a single layer. For the numbers of
hidden units, we evaluate values ranging from 32 to 8,192. Figure 3
presents the accuracy and F1 scores of the neural network with
different numbers of hidden units. We find that using 1,024 hidden
units gives the highest accuracy of 87.19% and F1 score of 0.88, so
we use this number of hidden units in the following experiments.
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Figure 4: Accuracy and F1 Score using Different Activation
Functions in a single layer with 1024 units.

5.3.2 Testing Different Activation Functions. The activation func-
tion determines which units within the hidden layers emit an output
value to use in the next hidden layer. We test different activation
functions provided by the TensorFlow library to find the function
that gives the best classification performance. Figure 4 shows the
accuracy and F1 scores of the model when using various activation
functions in a single layer of 1,024 hidden units. We find that the
ReLU activation function performs best with an accuracy of 88.22%
and an F1 score of 0.90.
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Figure 5: Accuracy and F1 Score over Different Number of
Layers with the ReLU Activation Function and 1024 units
per layer

5.3.3 Testing Different Numbers of Layers. When constructing neu-
ral networks, an increased number of hidden layers can help the
network learn relationships that are not linearly separable. How-
ever, a large number of layers increases the computational cost of

training and can lead to over-fitting the training data. We evaluate
our neural network with different numbers of layers ranging from 1
to 20. Figure 5 shows the accuracy and F1 scores of the model when
using different numbers of hidden layers, each with 1,024 hidden
units and each using the ReLU activation function. We find that
the accuracy and F1 scores of the models with 1 to 4 hidden layers
show very little change in performance. After 5 hidden layers, both
the accuracy and F1 scores begin to decline. We find that 3 hidden
layers provides the highest accuracy of 87.78% and F1 score of 0.89.
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Figure 6: Training Metrics over 30 Iterations

5.3.4 Best-PerformingHyperparameters. Figure 6 presents the train-
ingmetrics obtained by the neural network using the best-performing
hyperparameters: 3 hidden layers, 1024 hidden units per layer, and
the ReLU activation function. After training the neural network,
evaluating the network on a test set shows that the model can
obtain a final accuracy of 88.07%. This metric describes how often
the model correctly classifies a sample with the correct label. The
precision of the model, which describes how often the model cor-
rectly outputs a label whenever it predicts that particular label, is
0.91. The recall of the model, which describes how often the model
correctly outputs a label against all the samples that have that label,
is 0.87. The model achieves an F1 score of 0.89.

5.4 Performance and Memory Overhead
5.4.1 Training Time and Classification Time. We find that the neu-
ral network within the Classifier can be trained in a short amount of
time, and classification is near-instant for the abstraction sequence
provided to the classifiers. Specifically, the multi-layered neural
network takes an average of 47.84 seconds to train and 0.17 seconds
to predict labels for the test set.

5.4.2 Abstraction Generation Time and Space Overhead. For the
abstraction generation step, the average file size that WASPur pro-
cessed, among the WebAssembly modules with function names,
is 326.37KB. The average memory overhead by WASPur at run-
time is 252.01MB. While this memory usage value is large, we note
that our prototype implementation can be further optimized to
reduce memory usage, and we leave this task as future work. To
scan a WebAssembly binary, WASPur constructs both intra- and
inter-procedure control flow graphs for each function. The average
time spent on the graph construction is 320.94 ms. We also observe
that the graph construction time and the file size have a linear
relationship, indicating that WASPur is scalable.
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6 DISCUSSION
6.1 Threats to Validity
6.1.1 Internal Validity. Our study results are subject to possible
errors in themanual inspection processes of labeling theWebAssem-
bly samples and grouping the function names. These subjective
steps can be biased due to our inference of the code’s intention
and the compilation practices in the lack of documentation. To
reduce this threat, two authors analyzed the samples separately
and discussed inconsistent results until they agreed on the labels.

6.1.2 External Validity. Our choice of when and where to search
for WebAssembly samples may affect our results. While we have
attempted to search for a large set of WebAssembly files from a
variety of sources and during separate times, our findings may not
be applied to other datasets. Moreover, we spend significant effort to
manually analyze the samples. Specifically, we spent approximately
700 person-hours to analyze the 6,769 collected samples.

6.1.3 Construct Validity. Themetrics andmeasurement procedures
we used to assess the prevalence of WebAssembly, its use cases, and
portability practices can construct validity threats. We may have
missed other measures and metrics that would better or further sup-
port our conclusions. To mitigate this threat, we examined our data
via several ways of measurement, including analyzing the group
statistics of WebAssembly modules quantitatively and studying the
individual use cases and indicative signatures qualitatively.

6.2 Future Work
6.2.1 Analyzing Beyond the Functions Section. Currently, the Clas-
sifier only uses the abstracted IR of the instructions defined within
WebAssembly functions. It may be beneficial to include informa-
tion from the remaining WebAssembly module sections as well.
For example, including the function types within the abstracted
traversal sequence may increase the predictive performance. The
usage of imported functions defined in the Imports section may
further increase the semantic information available to the classifier.

6.2.2 Including Symbolic Values. Our abstractions also contain
symbolic values modeling function execution. These values cap-
ture the intermediate computations performed on the stack values.
Leveraging information from the symbolic values, such as the data
types involved, could be used to improve the performance.

7 RELATEDWORK
WebAssembly Prevalence Study. Prior work aims to study the
prevalence of WebAssembly by retrieving WebAssembly samples
from web crawling [32]. Hilbig et al. perform an empirical study
on the real-world usage of WebAssembly binaries [14].
WebAssembly-Based Cryptominer Studies. Prior works ana-
lyzing WebAssembly have focused on cryptojacking. Minesweeper
detects WebAssembly-based cryptominers within the Alexa top 1
million [20]. Other works use JavaScript and WebAssembly char-
acteristics of cryptominers to identify them [18, 31, 33]. MinerRay
detects hybrid in-browser cryptominers by using an IR to trace
semantics across JavaScript and WebAssembly [37].

WebAssembly Analysis Tools. Prior works develop tools to ana-
lyze WebAssembly security and execution. The security tools per-
form authoring [16] and taint tracking [10, 47]. Wasabi is a frame-
work to dynamically analyze WebAssembly code via instrumenta-
tion [23]. WASim is a tool that automatically identifies the purpose
of a WebAssembly module [36]. In comparison, WASPur identifies
the functionalities of individual WebAssembly functions.
Natural Language Processing and Machine Learning on Bi-
nary Code. This work uses natural language processing (NLP)
and machine learning techniques for program analysis. NLP tech-
niques have been applied to binary and source code for several
purposes, such as software categorization [7, 21] and code summa-
rization [12, 22]. Other works have compared the used of traditional
NLP methods with machine learning-based techniques for source
code modeling [13].

Machine learning techniques have been applied on binary and
source code to assist in program analysis [26, 28, 34, 38, 51], catego-
rize software [24], identify vulnerabilities [17], and detect malicious
executables [2, 3, 11, 40, 43].

Deep learning techniques have also been used to analyze bina-
ries and source code for improving code maintenance [5, 30, 54],
modeling entire software repositories [52], inferring keywords for
obfuscated executables [46], detecting malware [41, 42], and mea-
suring binary code similarity [25, 49, 53].

8 CONCLUSION
In conclusion, we present WASPur, an automated classification

tool that identifies the purpose of an individual WebAssembly func-
tion. The tool leverages a semantics-aware intermediate represen-
tation to identify the semantics of WebAssembly functions whose
purposes are known. To train and evaluate the classifier, we con-
struct a dataset of 6,769 WebAssembly samples, with 1,829 being
unique, collected from real-world websites, Chrome extensions,
Firefox add-ons, and GitHub repositories. We describe the use cases
and file statistics found from these collected samples to gain insight
into the dataset. We evaluate the classifier after training it on la-
beled functions and find that it achieves an accuracy of 88.07%. We
hope our automated classification tool can help developers and end
users understand the purposes of the functions within a minified
WebAssembly module.
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