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ABSTRACT
In this paper, we present a new ad budget draining attack. By repeat-

edly pulling ads from targeted advertisers using crafted browsing

proles, we are able to reduce the chance of showing their ads to

real-human visitors and trash the ad budget. From the advertiser

proles collected by an automated crawler, we infer advertising

strategies, train satisfying browsing proles and launch large-scale

attacks. We evaluate our methods on 291 public advertisers selected

from Alexa Top 500, where we successfully reveal the targeting

strategies used by 87% of the advertisers we considered. We also

executed a series of attacks against a controlled advertiser and 3

real-world advertisers within the ethical and legal boundary. The

results show that we are able to fetch 40, 958 ads and drain up to

$155.89 from the targeted advertisers within an hour.
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1 INTRODUCTION
Online advertising is the primary source of income for many Inter-

net companies. In the US market, Google and Facebook generated

$36.69 and $12.4 billion [22] from advertising in 2016 respectively.

According to a report by the Internet Advertising Bureau (IAB), the

revenues generated from Internet advertising in the United States

totaled $72.5 billion in the full year 2016 [20], which represents an

increase of 21.8% from the revenues reported in 2015. It is estimated

that the U.S. digital advertising will continue its growth and the ad

revenue will reach $83 billion in 2017 [22].

In its basic form, online advertising entails selling spaces on

websites to parties interested in showing ads for a monetary fee.

However, the mechanisms and backing up the online advertising

ecosystem are quite complex. The ad delivery infrastructure in-

volves four major parties: publishers, advertisers, ad network, and
ad exchange. Publishers are websites owners who oer space to

display ads on their websites. Advertisers pay publishers for ad

slots to place specic ad content with embedded links. Ad networks

play the role of match-makers to bring together publishers with

advertisers who are willing to pay the most for the publisher’s

oered space. Ad exchanges are networks of ad networks. An ad

exchange works similarly as an ad network, except that the buying

and selling entities within an ad exchange are ad networks.

To reach the most receptive audience, advertisers often use so-

phisticated targeting methods to serve ads to the right viewers. The

targeting strategies can either be geographical based such as serv-

ing an ad to users in a specic country or demographically focused

on age, gender, etc. They can also be behavioral variables (such as

a user’s browsing activities and the purchase history) or contex-

tually focused by serving ads based on the content of a website.

In addition, advertisers may employ dierent targeting strategies.

Some advertisers may value customers who placed an item in cart

as more promising potential buyers than customers who simply

browsed the item page. So they deliver dierent ads to these two
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Figure 1: Ad ecosystem

types of customers. Others may consider them as equally favorable

and apply the same strategy.

Retargeting is a technique where advertisers use behavioral tar-

geting strategies to promote ads that follow users after they have

expressed a prior interest in an advertiser’s website, such as looked

at or purchased a particular product. Retargeting is very eective

as a retargeting ad is personalized to an individual user’s interests,

rather than targeting groups of people whose interests may vary.

Given the underlying lucrative benets, the involved ad parties

have strong incentives to conduct fraudulent activities. In fact,

advertising fraud becomes a massive problem in ad industry and

is ruining this billion-dollar business. According to IAB, ad fraud

is costing the U.S. media industry around $8.2 billion in 2015 [19]

and half of the loss derives from “non-human trac”.

In this paper, we propose an innovative ad budget draining at-

tack by precisely fetching ads from the targeted advertisers. Our

technique is able to reverse engineer targeting strategies and train

browsing proles that satisfy the conditions set by the advertisers.

In summary, we make the following contributions.

• We propose a novel ad budget draining attack targeting at

specic advertisers by repeatedly pulling their ads to trash

the budget.

• We develop a black-box testing based technique to automati-

cally infer targeting strategies and create satisfying browsing

proles.

• Out of 291 advertisers selected from Alexa Top 500, we suc-

cessfully revealed the targeting strategies used by 254 adver-

tisers.

• We launched distributed attacks against a controlled adver-

tiser and 3 real-world advertisers. We are able to fetch 40, 958

ads and drained up to $155.89 within an hour.

The rest of this paper is structured as follows. We introduce the

online advertising ecosystem and fraudulent activities in Sec. 2. In

Sec. 3, we describe the ad budget draining attack in details. We

explain the evaluation results on both public and controlled adver-

tisers in Sec. 4. We discuss potential countermeasures in Sec 5 and

related work in Sec. 6. We conclude the paper in Sec. 7.

2 ONLINE ADVERTISING
In this section, we discuss the entities in the ecosystem and explain

how retargeting ad works. We also show existing threats of the ad

ecosystem.

2.1 Ad Ecosystem
The entities in the ad ecosystem include publishers, advertisers,

ad networks, and ad exchanges. Publishers are the websites who

earn money by selling ad space on their pages. Advertisers are

the buyers who pay ad networks to deliver their ads. Ad networks

are the entities that connect advertisers with websites and help

advertisers nd right publishers. Ad exchanges are networks of ad

networks, which enable ad trac transactions among ad networks.

Fig. 1 explains how an ad is delivered by an ad exchange. When

a user visits the publisher website 1 , an ad request is sent to the ad

exchange 2 . The ad exchange conducts a real-time auction, where

the exchange sends requests to ad networks 3 . Based on the user’s

characteristic, ad networks respond with their oers 4 . The ad

exchange picks an oer and delivers the winner’s ad to the user 5 .

The whole auction is done in milliseconds.

The ecosystem delivers ads for a fee. There are several pricing

models and cost per thousand impressions (CPM) is commonly used.

Assume the CPM is $7 in Fig. 1. The winning advertiser (Advertiser

2) pays 0.7 cents per ad, which will be split among the ad network,

the ad exchange, and the publisher.

2.2 Retargeting Ad
E-commerce websites want attract potential customers by all means,

hoping they will make purchases, become registered users, etc. The

percentage of visitors attracted is called the conversion rate. In
reality, only 2% of visitors take desired actions in their rst visit

[33]. Retargeting is created to attract the remaining customers by

display personalized ads. It tracks website visitors and delivers

customized ads when they visit other websites.

In particular, advertisers need to identify a list of high-value

visitors. To do so, advertisers include a retargeting pixel, which is a

small snippet provided by a retargeting service provider, in their

web pages. When a user arrives, the pixel drops an anonymous

cookie and enroll this visitor to the list. The anonymous cookie acts

as the browsing prole, which is a set of IDs andmemorizes browsing

activities. The retargeting service providers identify unconverted

visitors and deliver them personalized ads. To reach more visitors,

the retargeting service providers maintain partnership with major

ad networks, such as Facebook, and Google Display Network. They

participates the real-time ads auctions and bids aggressively.

Retargeting is very eective. E-commerce sites can save money

and eorts by selectively targeting visitors who have already ex-

pressed interests. According to Kimberly-Clark, a global leader in

selling paper products, they accounted for 50 − 60% conversion

rates from their retargeting eorts [11]. Similarly, [23] reported

that online retailer ShopStyle gained a 200% increase in retargeting

conversions. Retargeting also benets customers because the ads

delivered are relevant to their interests.

2.3 Threats
While ad exchanges enable ecient and powerful campaigns, their

pricing models make the system a highly lucrative target for cyber-

criminals. For instance, to articially inate the actual impression

amount and earn more money, a publisher can fabricate visits to

publisher pages such that the advertiser’s ad budget is wasted

because the ads were not seen by real human visitors. Such fraudu-

lent activity is called impression fraud. Although ad networks and

exchanges perform real-time monitoring, it is always dicult to

Track: Security and Privacy on the Web WWW 2018, April 23-27, 2018, Lyon, France

298



① Advertiser’s Data Collection

Attacker
Targeted E-commerce Website

Targeted Advertiser

Ad Network

Attack Module Generator

Attack Module

② Attack 
Module 

Generation
③ Attack 

Module 
Deployment ④ Distributed

Attack 

⑤ Ad Budget 
Draining

Attack machines

Figure 2: Ad budget draining attack procedure

prevent from various kinds of fraud activities because of the huge

amount of ad trac.

3 AD BUDGET DRAINING ATTACK
In this section, we elaborate the ad budget draining attack. The

victims of our budget draining attack are people or companies that

advertise their e-commerce websites using retargeting ad services.

The immediate consequence of the attack is the wasted advertise-

ment budget. Moreover, the chance of their ads being displayed can

be reduced since it would be dicult to win during the ad auction

with the drained ad budget. The potential attackers can be com-

petitor advertisers who may try to drain the others’ ad budget and

unfairly win the competition. Another possible scenario is denial

of service (DOS) attacks performed by people who seek to make

ads from the targeted advertiser unavailable for the purpose of a

protest. Fig. 2 shows the overall attack procedure. The attacker

collects data about the targeted advertiser, generates attack modules
that automatically craft browsing proles and pull the victim’s ads.

Note that the attack modules can be independently deployed to

launch distributed attack. Throughout these process, the attacker

can drain the targeted advertiser’s ad budget by repeatedly fetching

ads. The details of our attack mechanism are explained in the rest

of this section.

3.1 Overview
As discussed in Sec. 2, ad networks track website visitors and deliver

targeted ads if they satisfy the advertising strategies. Therefore,

identifying the strategies is the rst step to attack a particular adver-

tiser. Since ad networks may dene arbitrary strategies, eectively

reverse-engineering the retargeting logic and craft corresponding

browsing proles are the keys to reproducibly launch large-scale

attacks. As shown in Fig. 3, website modeling, advertiser proling,
attack module generation and attack distribution are the major steps

involved in the ad budget draining attack.

1 Website Modeling. A website model represents structural de-

signs and relationships between web pages. In order to be classied

as advertisers’ favored customers and eventually see their ads, one

eective way is to visit the advertisers’ websites and trigger the

tracking logic. However, identifying desired navigation sequences

that eectively trigger the tracking logic (e.g., products need to be

put in the shopping cart) is not trivial due to the huge search space.

Therefore, our rst step is to create a model for the targeted website

to guide the search. In particular, we navigate the targeted website,

apply clustering algorithms to the pages, then create a Finite State

Machine (FSM) model. Details can be found in Sec. 3.2.

2 Advertiser Proling. In this step, we focus on inferring target-

ing strategies. We developADHoneyClient to automatically discover

the strategies based on black-box testing techniques. We also iden-

tify the optimal ads fetch count to work around the rate limits set

by the ad networks. We explain our algorithms in Sec. 3.3.

3 Attack Module Generation. The attack modules generated

contain the training data and the utilities to create satisfying brows-

ing proles, where training data is a set of HTML page with ads

tracking tags. The module also features an fetch page and an attack
engine. The fetch page is a single HTML page with several ads slots

that pull the targeted ads. The attack engine drives the whole train-
ing and ad fetching procedure. As ad networks may equip IP based

defense mechanisms, our attack engine can leverage the public

proxy lists and randomly change IP addresses to evade IP-based

detections. Details can be found in Sec. 3.4.

4 Attack Distribution. The nal step is to deploy the attack

modules on multiple machines to launch a distributed attack. In

particular, each attack module trains a browsing prole satisfying

the strategy from the training pages and repeatedly fetches ads

using the ad fetch page. We explain the details in Sec. 3.5.

3.2 Website Modeling
Awebsitemodel describes its structure and transitions among pages.

It can be used to guide the targeting strategy discovery. Fig. 4 shows

the steps for model creation.

3.2.1 Browsing Trace Collector. The browsing trace collected

at 1 in Fig. 4 is used to cluster pages. The collector automatically

records browsing activities while an attacker explores the targeted

website. Table 1 shows example traces. We record two types of

data: pages visited and events triggered. The page data contains the

HTML source code and the corresponding URL. If no redirection

happens, the page ID is recorded (e.g., P4 in Table 1). The event

data describes the browsing action, the DOM object involved, and

action attributes.

Note that we do not require a complete website model. Instead,

we only need a few inputs. In practice, we observed that usually a

small number of actions are sucient to trigger the tracking logic.

For example, if a visitor sees ads after she visited the advertiser’s

product page, only one action (i.e., visiting the advertiser’s product

page) is needed. However, if an advertiser targets visitors who added

items to the shopping cart and left without buying, the actions of

1) visiting a product page, 2) clicking the add-to-cart button and 3)

visiting the cart page are needed.

3.2.2 Page Clustering. With the trace collected, we group simi-

lar pages into clusters based on its functionality. For example, P3
and P7 in Table1 are grouped together as the product page. We apply

dierent clustering methods based on page types:
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Table 1: Example of collected browsing trace
Trace
No

Page Event
ID URL ID Action XPath Data

1 P1 shopping.com E1 click //*[id="cat1"]

2 P2 ./cat1 E2 click //*[id="prod1"]

3 P3 ./item?prod=1 E3 dom //*[id="size"] 6

4 P4 #P3 E4 click //*[id="cat2"]

5 P5 ./cat2 E5 click //*[id="cat3"]

6 P6 ./cat3 E6 click //*[id="prod2"]

7 P7 ./item?prod=2 E7 dom

//*[id="size"]

//*[id="color"]

7

white

8 P8 #P7 E8 click //*[id="AddToCart"]

9 P9 ./cart

• The Redirected Pages are ones clustered by context ( 2 in

Fig. 4), where we compare page structures. In particular, we cal-

culate the DOM Tree Edit Distance (TED) [27, 36] and measure

the similarity using hierarchical clustering algorithms [34].

• The DOMModied Pages are ones grouped using a link-based
clusteringmethod ( 3 in Fig. 4). Specically, DOMmodied pages

containing page IDs (links) in a same cluster are grouped together.

For example, in Table 1, the page P4 is linked to the page P3, and
P8 is linked to the page P7. Since P3 and P7 are in the same cluster

(product pages), P4 and P8 are grouped together.

3.2.3 Model Builder. The model builder connects the clusters

based on the order observed in traces and assigns event data to the

S1:
{P1}

S3:
{P3, P7}

S2:
{P2, P5, 

P6}

S4:
{P9}

S5:
{P4, P8}

T1:{E1} T2:{E2,E6}

T4:{E3,E7}

T5:{E4}

T6:{E8}

S:State
T:Transaction
P:Page
E:Event

State annotation
S1 : Front page
S2 : Category page
S3 : Product page
S4 : Cart page
S5 : DOM modified Product page

T3:{E5}

Figure 5: An example of website model

edges. As a result, a Finite State Machine (FSM) is created, where

nodes represents states and edges with event annotations denote

transitions. Fig. 5 shows a model created from the example traces.

By having a model, we can create proper browsing proles as many

as possible, and more importantly, we can avoid creating redundant

proles.

3.3 Advertiser Proling
As discussed in Sec. 2, ad networks track website visitors and deliver

targeted ads if they satisfy the advertising strategies. As strategies

are invisible to us, we have to infer the strategies by proling the

targeted advertisers.

3.3.1 ADHoneyClient: An Automated Ad Crawler. We need a

large amount of ads related data to infer the retargeting logic. To

automate the data collection process, we develop an ad crawler

ADHoneyClient to fetch ads with customized browsing proles and

emulate browsing activities. As ads are probably the most com-

plicated and dynamic snippets observed on general websites, AD-
HoneyClient has to handle complicated DOM objects and dynamic

JavaScript. ADHoneyClient has the following two components:

1) Browsing Prole Trainer. Browsing proles are tracking IDs
stored in cookies that memorize the browsing history. Browsing
prole trainer crafts browsing proles by triggering ads tracking

logic. Starting from a fresh prole, the prole trainer produces
customized browsing proles by simulating browsing activities. It

navigates the website guided by the model with example inputs. In

the meantime, tracking scripts can update the browsing prole and

send browsing histories to the retargeting service providers.
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Table 2: HTML Tags Used for Ad Parser
HTML tag Attribute Ad information
<a> id, href ad_url, ad_network

<script> id, src, innerHTML ad_url, ad_network

<noscript> innerHTML ad_url

<iframe> id, src, name ad_network

<img>,<embed>,<object>,<video> width, height type, size

2) Ad Extractor. The Ad extractor fetches ads using the crafted

browsing prole generated by the trainer. In particular, it infers the

targeting strategy, ad specs and the optimal fetch count. Details

will be explained in Sec. 3.3.2.

When ads arrive, Ad parser determines their sources, speci-

cations (such as types and sizes) and the ad network involved. It

also extracts ads related HTML tags. In particular, since ads are

usually rendered in the nested <iframe> for security purposes, it

drills down and looks for specic ids (e.g. “google_ads_iframe_*”
for DoubleClick). Once found, it collects element attributes as

well as HTML tags inside. To identify ad networks, we manu-

ally developed 53 signatures. For example, the famous retargeting

ad networks Criteo [4] can be identied if the src of <iframe>
is *.criteo.com/delivery/r/afr.php?. Besides, Ad parser har-
vests all URLs included in the HTML pages pointed by ads related

<iframe>. It also determines the size and type of the ads from the

attributes of observed <embed>,<object>, <video> and <img>. We

found some tags found in ads related iframes are not useful. We

only collect the tags listed in Table 2 for better eciency.

3.3.2 Advertiser Profiling. In this subsection, we explain the

targeting strategy, Ad specication, and optimal Ad fetch count pro-
duced by ADHoneyClient, which will be used as the training data

in the next step.

Targeting Strategy. A targeting strategy is a sequence of brows-

ing activities which can be used to identify high-value customers.

For example, advertisers can target at visitors who browsed the

product pages or left something in carts without buying. A target

strategy simulates the browsing activities demonstrated by such

favored visitors. Take the website model in Fig. 5 as an example. A

corresponding browsing activity example can be [visiting a product
page, choosing an option, adding it to a cart], which can be described

by a path covering states and transitions S3,T4, S5,T6 and S4. As our
website model is deterministic, the representation can be simplied

to S3,T4 and T6. To concertize it, we pick a page/event from each

state/transaction and get a targeting strategy [P7,E7,E8].
Algorithm 1 explains how we generate a target strategy from

the website model graph produced in Sec. 3.2. The output target

strategy is a list of browsing activities, where each activity can be

either a page or a event obtained from the model.

Function FindTargettingStrategy is the main procedure. It

keeps generating dierent strategy candidates (line 3) until a desired

strategy is found (line 6) or the max number of tries is reached (line

2). In particular, FindTargettingStrategy generates uncovered

strategy candidates. Given a strategy, AdHoneyClient follows the
activity sequence in a strategy, trains the browsing prole and

fetches ads (line 4). If the ads are from the targeted advertiser (line

5), a targeting strategy is found.

Algorithm 1 Finding Targeting Strategy

Input:
(1) M = (S, T): website model graph, where vertex Si ∈ S denotes a page cluster
{Pm, ..., Pn } and edge Tj ∈ T is a set of events {Ex , ..., Ey }.

(2) L: Max length of elements in a candidate.

(3) N : Max number of candidates to test

Output: targeting strategy TS =[b1, .., bl ]: a list of browsing activities, where

bi ∈ {P1, ..., Pm } ∪ {E1, ..., En }

1: function FindTargetingStrategy(M, L, N )

2: for i ← 1 to N do
3: TSc ← GenerateCand(M, L)

/* generate browsing prole guided by TSc and fetch Ad using ADHoneyClient */

4: ad ← TrainAndFetchAd(TSc )
5: if base url of ad and M is same then
6: return TSc
7: return ∅

8: function GenerateCand(M, L)
9: l ← RandomSelect({1, 2, ..., L }) /* length of the candidate */

10: TS ← [ GetRandomPage(M ) ] /* the activities starts with a page */

11: for i ← 1 to l − 1 do
12: type ← RandomSelect({“state ′′, “transit ion′′ })
13: if type is “transit ion′′ and TS [i − 1] < an accepting state then
14: if TS [i − 1] is an event Ek then /* continue to the next event */

15: TS ← Append(TS, Ek+1)
16: else if TS [i − 1] is a page Pk then
17: TS ← Append(TS, Ek )
18: else if type is “state ′′ then
19: TS ← TSGetRandomPage(M )
20: if TS has been seen before then /* removes redundant candidates */

21: TS ← GenerateCand(M, L)
22: return TS

23: function GetRandomPage(M)

24: Sr ← randomly select a state fromM except DOM modied states

25: Pr ← randomly select a page in the state Sr
26: return Pr

Function GenerateCand generates a targeting strategy candi-

date. It starts by randomly picking an initial a page in a state (line

10) and randomly selects pages or events as consecutive activities.

A naive way to select the next activity is to follow the transitions

in the FSM website model. However, we observed it cannot eec-

tively create diverse candidates. Instead, we randomly select a page

from a state when we want to have a “state” as the next activity.
In this way, we can produce more diverse models especially when

the model coverage is low. For instance, a strategy generated can

be [P7, P1,E1], where we directly go to P1 after visiting P7 even

though there is no edge between them on the model. Intuitively, this

simulates the random jumps among pages during the navigation.

In particular, when we choose to have a “transition” as the next
activity (line 13), we append the consecutive event to the activity

list (lines 15 and 17). If the type is “state”, we select a random page

from a random state (lines 24 and 25). Please note that the DOM

modied states are excluded as they require DOM modication

events and thus not directly accessible (line 24).

Ad Specication. Ad networks dene ads parameters such as di-

mensions and formats (e.g. image, ash, video, etc.) that advertisers

have to follow. As we will need to seed ad slots to obtain the desired

ads, these specs are important too. For example, if the size of an

desired ad is 300 × 250 but we only supports 160 × 600, it will not

be delivered due to the inconsistency. Therefore, we also collect

ads specs. Although some ad providers support responsive ban-

ners, where the size can be automatically determined at the time
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Figure 6: Targeted ads fetched with a single browsing prole

of fetching, ads specs are still useful as they may prevent potential

inconsistencies and improve the success rate.

Optimal Fetch Count. In practice, a browsing prole may expire

after repeatedly fetching a certain number of ads, as ad networks

usually set a rate limit on the ads delivered to a single user. There-

fore, we also need to infer the optimal fetch count, which is the

number of the ads that can be fetched using a single prole. In

particular, we monitor the fetch rate using a browsing prole until

the rate drops signicantly, we use the number of ads fetched before

drop as the optimal fetch count.
For example, we fetch 30 ads per batch using a single browsing

prole from two advertisers. Fig. 6 shows the number of ads fetched

in each batch. For advertiser 1, the fetch rate drops to 70% at batch

6 and then to 0. Similar patterns are observed for advertiser 2. After

the 3rd batch, the rate is decreased to 6%. Therefore, the optimal
fetch counts for them are 180 and 90 respectively.

In our experience, we use 50% as the threshold to balance the

eorts of creating new proles and ads fetching. In other words,

once the targeted ads fetch rate drops below 50%, we stop fetching

and set the number of ads fetched so far as the optimal fetch count.

3.4 Attack Module Generation
An attack module contains three components: tracking tag-only
page, the ad fetch page, and the attack engine. The rst two are

HTML pages for browsing prole training and ads fetching. The

attack engine drives the process based on the attack parameters.

3.4.1 Tag-only Training Page Builder. To train browsing proles,

we emulate activities specied in targeting strategies. This is one of

the most time consuming parts as we have to repeatedly create new

proles. To correctly set the tracking IDs and browsing histories,

we have to trigger the tracking scripts (Sec. 3.3.1). Unfortunately,

tracking scripts are usually executed after the page is fully loaded,

which signicantly drags down the attack performance. To improve

its eciency, we use the tag-only training pages extracted from the

original pages that only contain the tracking scripts.

Fig. 7 shows how tag-only training pages are built. We get the

HTML source code from the fully rendered page and extract JS

snippets whose tags match pre-collected tracking tag signatures.

We then build a tag-only training page using the extracted scripts

{
”src”:”widget.criteo.com/*”
“src”:”static.criteo.net/*”
“src”:”*.tellapart.com/*”
“innerHTML” :”tag.marinsm.com/”
…
}

Tag-only Training
Page Builder

<html>
<head></head>
<body>
<script defer async="true" type="text/javascript" 
src="http://widget.criteo.com/event?a=9049&v=4.1.0&p0=e%3
Dexd%26ui_isNFLpage%3Dn%26site_type%3Dd&p1=e%3Dvp%26p%3D1
1102506&p2=e%3Ddis&adce=1" data-owner="criteo-
tag"></script>
<script type="text/javascript" async="" 
src="//static.criteo.net/js/ld/ld.js"></script>
</body>
</html>

Tracking Tag
Signature Data

Source code
after Rendering

Targeted E-commerce 
Website Page

Tag-only
Training Page

Figure 7: Tag-only training page building process
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Figure 8: Total time spent for fetching 180 ads

and the mandatory DOM elements such as <html>,<head>, and
<body>. The snippets at the bottom in Fig. 7 is the example output.

3.4.2 Ad Fetch Page Builder. An ad fetch page is an HTML le

containing a set of ad slots. It is similar to the crafted page created

for ADHoneyClient (Sec. 3.3.1). We congure each ad slots based

on the collected ad specs. Besides, we need to optimize the number

of ad slots per a batch for better ecacy. However, it is dicult to

predict the appropriate number because the ad loading procedure

varies. Therefore, we perform an experiment in this step to infer

the optimal number of ad slots per batch.

To be specic, we compare the total time spent to fetch a partic-

ular number of ads. As explained in Sec. 3.3.2, we can only fetch a

limited number of ads with a single browsing prole. Therefore, we

use it as the upper bound in each experiment. For example, suppose

the optimal fetch count is 180. We rst fetch 10 ads each time and

repeat for 18 times. Then, we try dierent batch size and compare

the time needed to get all ads specied by the optimal fetch count

(180 in this example). The results are shown in Fig. 8. We achieve
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Table 3: One hour attack against controlled advertiser

# of
VM ads CPM budget

drained cost cost /
drained

per VM
ads drained

1 2977 $3.30 $9.82 $0.13 0.01 2977 $9.82

2 4965 $2.84 $14.10 $0.26 0.02 2483 $7.05

3 10114 $4.72 $47.74 $0.39 0.01 3371 $15.97

4 12485 $4.55 $56.81 $0.52 0.01 3121 $14.20

5 16875 $3.28 $55.35 $1.04 0.02 3375 $11.07

6 21264 $3.55 $75.49 $1.56 0.02 3544 $12.58

7 28483 $2.16 $61.52 $2.08 0.03 4069 $8.79

8 30484 $3.95 $120.41 $4.16 0.03 3811 $15.05

9 37880 $3.77 $142.81 $6.24 0.04 4209 $15.87

10 40958 $2.95 $120.83 $8.32 0.07 4096 $12.08

Average 3506 $12.24

the best performance when we fetch 20 ads per batch. Therefore,

we include 20 ad slots in the ad fetch page in this example.

3.4.3 Aack Parameters. Attack parameters are a set of data

used by the attack engine to customize the attack process. We may

specify the attack time including the start time and duration. We

can set the attack strategy, which can be exhaustive or smart. The
exhaustive attack aims to drain the advertising budget as fast as

possible. But it has high risk of getting detected. The smart attack is
less aggressive and randomly sleeps to simulate human behaviors.

3.5 Attack Distribution
When the attack module is ready, it is deployed to virtual machines

hosted on public cloud services, such as Amazon EC2[2], Google

Cloud Platform[5], and Microsoft Azure[3]. Using public cloud

services has the following advantages. First, it is cost eective. We

can launch the attack for a few cents per hour (Sec.4). Second, we

can evade the IP address based detections without additional cost.

The attack engine in the distributed attack modules repeats two

operations: browsing prole training and ads fetching. It loads the
tracking-tag only pages in sequence to train browsing proles, and

fetches ads using the ad fetch page. It repeats the whole procedure

until the optimal fetch count is reached and disposes the browsing

prole by ushing the cookies and local storages.

4 EVALUATION
In this section, we describe the implementation and experiment

results to validate the ecacy of our attack. We implement the

ADHoneClient in Python based on the Selenium libraries [7]. The

attack module is built as a chrome extension for easy deployment.

The experiments are done on Microsoft Azure VMs. We choose the

D1 v2 instances which provide the 2.4 GHz Intel Xeon E5-2673 v3

(Haswell) processor, 3.5GB RAM and Windows Server 2016. The

pricing plan for a single instance is $0.13 per hour.

We launch attacks against two types of advertisers.We rst target

at controlled advertisers, where we create the advertiser and set up

the advertising strategies. The second experiment is to attack public

advertisers in the wild (after obtaining their approvals), where
advertisers run real-world e-commerce websites. More experiment

details can be found in [8].

4.1 Controlled Advertiser
In this section, we evaluate our attack on the controlled adver-

tiser created by us. As a valid advertiser served by a real-world ad

Figure 9: Our ad is displayed on popular sites like nbc.com

network, we can get the actual numbers of ads being displayed,

ad budget drained and the cost per 1, 000 impressions (CPM) to

precisely calculate the nancial damage. Besides, we can perform

large-scale attacks without concerning about ethical issues. So, we

can evaluate the full capacity using distributed VMs.

In particular, we created an e-commerce website that sells coee

beans and registered in an ad network. We run an ad campaign

with a banner image and set weekly ad budget to $150. We target

users who visit our product pages. To conrm if our ad is available

to public, we visit the page to create a satisfying browsing prole.

Then we visit popular websites and check if it can be fetched. As

shown in Fig. 9, our ad is actually displayed at the right bottom

corner on one of the top news websites, nbc.com.
We create an attack module performing exhaustive attack for

an hour. Fig. 10 shows a batch of the ads fetched using the attack

module, where most of the ads are from our advertiser. We also

prepare a virtual image with the attack module installed. We create

10 virtual instances using the image in order to evaluate the dis-

tributed attack capability. Using the attack machines, we conduct

10 rounds of attacks with dierent number of attack machines.

Table 3 describes the result of the distributed attack against

the controlled advertiser. The rst column shows the number of

attack machines. The second column shows the total number of

our ads we fetched. We report the CPM, the budget drained and the

cost. The result shows that we successfully fetched about 40k ads

using 10 attack machines. Moreover, the number of fetched ads is

increasing linearly with the number of attack machines. On average,

we fetched 3, 506 ads per machine and drained $142.81with 9 attack

machines. We are able to drain 95% of the weekly budget within an

hour. Note that we achieved better performance with 9 machines

(instead of 10). The reason is that the CPM is measured dynamically.

Although more ads are fetched using 10 VMs, the drained budget

is less comparing to 9 VMs ($2.95 vs $3.77). We report the ratio of

the cost to the drained budget. The costs are merely 1% to 7% of the
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Figure 10: Ads fetched using the trained attack module

drained budget, which indicates that the attack using distributed

machines on public cloud is extremely cost eective.

4.2 Public Advertisers
In this section, we evaluate the attack against real-world advertisers

by executing attacks within the ethical and legal boundary.

4.2.1 Advertiser Selection. We target at advertisers who own

e-commerce websites and use retargeting ad services. Although

our implementation can be easily extended to support other ad

networks, currently we focus on DoubleClick. Therefore, we lter

out the websites listed in the shopping category in Alexa Top 500

[1] based on the following criteria: 1) websites do not have online

shopping functionalities, 2) websites only providing posting and

payment functionalities and 3) non-English websites. We also re-

move websites if they do not have ad tracking tags or only support

social networks/mobile ads. We use the remaining 291 websites to

infer their targeting strategies.

As it may cause ethical issues if we run a large-scale attack to

real advertisers, we reached out and requested permissions for a

10 minutes attack. We were able to get approval from 3 advertisers.

We anonymize their identity and represent them as advertiser 1, 2

and 3 in the result. Besides, we only use a single attack machine

for the experiments in order to minimize damages.

4.2.2 Revealing Targeting Strategies. The rst step of the budget

draining attack is to verify if the target is vulnerable. In our case,

if we cannot reveal targeting strategies from a targeted advertiser,

the advertiser is not vulnerable. So, we rst reverse engineer the

targeting strategies for each websites using our tool ADHoneyClient.
As shown in Table 4, we successfully revealed targeting strate-

gies from 254 out of 291 websites (about 87%). The rst column lists

the targeting strategy categories. After targeting strategies are suc-

cessfully reversed, we manually verify them the targeting strategies

discovered and put them in proper categories. If we cannot inter-

pret the intention behind the strategy, we mark them as arbitrary
activities. The second column shows the average number of

browsing activities in the targeting strategies. The third column

shows the number of websites using the targeting strategies.

The results suggest that most advertisers mainly target the users

who visit product pages. However, we can also see that 112 out of the

254 advertisers (about 44%) use sophisticated targeting strategies

Table 4: Reversed targeting strategies

Targeting Strategy Avg. # of
activities

# of
websites

Avg. training time (sec) RateFull page Tag-only page
Visiting a front page 1 31 4.78 0.70 6.87

Visiting a product page 1 111 4.37 0.57 7.65

Adding an item to a cart 3.48 79 8.55 1.17 7.29

Full shopping trip 4.94 28 19.59 2.00 9.77

Arbitrary activities

5 1 24.70 2.23 11.08

6 1 22.98 2.11 10.89

7 1 26.32 2.56 10.28

8 1 29.34 3.09 9.50

8 1 23.70 2.90 8.18

Total websites 254 Avg. rate 9.06

containing more than 3 browsing activities, which suggests that it

is ineective to get ads from such advertisers using the naive attack

method like visiting only the product pages or the front pages.

We manually inspected why we failed on the remaining 37 web-

sites (13%). We found that they either do not use the data collected

from the tracking tags or deploy long-term targeting strategies

(showing ads after a week) that is robust to a transient attack. Be-

sides, some target users using geographic data, which is orthogonal

to browsing proles.

To validate the ecacy of the tag-only training approach, we con-

ducted another experiment to show how signicantly we improved

performance comparing to the full page training. As described in

Sec. 3.4.1, we create tag-only pages containing only tracking tags

based on the targeting strategies revealed from the advertisers’ web-

sites. We record browsing prole training times using the tag-only

pages and the original fully-loaded pages. According to the results

in Table 4, the tag-only training is about 9 times faster on average.

4.2.3 Estimating Aack Damages. After we got the approvals,
we launched the attack against 3 public advertisers. However, we

cannot precisely obtain the numbers of ads displayed, CPM or

budget because they are condential business information. Instead,

we use the public ad reports providing category-based average CPM

for the rst two quarters of 2016 [29, 30] and do our best to estimate

the damage. Although the estimation may be biased, we believe it

approximately demonstrates how much ad budget we could drain

with our attack against real-world advertisers.

Table 5 shows the result of the attack and the estimated damage.

The columns 2 to 7 describe the output of the advertiser proling.

The column 8 shows the number of ads we fetched from each

advertisers. We report the average CPM in column 10 and use them

to calculate the estimated damage. The estimated budget drained

within one hour (column 11) ranges from $46.86 to $155.89.

4.3 Ethical Considerations
We would like to highlight that we take the ethical issues seriously

in our evaluation. This study was closely advised by a lawyer and

conducted in a responsible manner. Our evaluation process has been
reviewed by IRB and we received IRB exemption.

In the experiment of attacking a controlled advertiser, we own the

advertiser’s account and we pay for the charges. In the experiment

with the three real-world advertisers, we explained our methods

and potential damage to them. We start the experiments with their

approvals. We purposely performed a proof-of-concept experiment
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Table 5: 10 minutes attack result against selected public advertisers, and estimated damage

Advertiser Ad
Network

Targeting
Strategy

Optimal
Fetch
Count

# of ad
slots per
batch

AD Size Ad
type

#
of
ads

Ad
category

Estimated Damage

CPM Budget
drained/hour

1 A Visiting a product page 180 20 300x250, 160x600, 728x90 Image 3134 E-commerce $8.29 $155.89

2 A Adding an item to a cart 180 20 300x250, 160x600, 728x90 Image 2742 Retail $5.85 $96.24

3 B Visiting a product page 90 30 300x250 Image 942 E-commerce $8.29 $46.86

using only 1 attack machine within 10 minutes to minimize the

damage. We reported our ndings and suggestions to them.

In spite of all of our eorts, due to the nature of the problem, ads

from other advertisers showed up in our experiments. However,

we conrmed that total rewards we collected from the untargeted

advertisers as a publisher was less than $10. As the damages are

distributed among all of the advertisers, the nancial loss of one

advertiser is negligible. More importantly, Google DFP is able to

refund credits to advertisers when publishers violate their policies.

We are in communication with DFP so that they can refund we

earned throughout all of our experiments to the aected advertisers.

5 COUNTERMEASURES
In this section, we describe countermeasures against our attack. We

introduce the detection and prevent methods.

5.1 Detection
In order to detect our attack, ad providers or ad networks can look

for anomalies in ad request tracs. We discuss three possible detec-

tion approaches and their limitations in the following paragraphs.

Browsing prole based detection. The number of ad requests

generated by a benign users is usually smaller than that from attack

machines. Therefore, the number of ad requests per browsing prole

can be used as a detection feature. For example, if a large amount

of requests with the same browsing prole within certain period

are observed, we can consider this as the attack situation. However,

this feature may not be eective since our attack does not use the

same browsing proles for many times. Another viable feature is

the number of browsing histories in a single browsing prole. In

order to increase eciency of our attack, we only train a browsing

prole with few pages in a targeted website. Those proles created

in that way contain the limited number of browsing histories, but

benign users normally have larger number of browsing activities.

IP address based detection. IP address based blacklists can be

used too. We can mark requests suspicious if an excessive number

of requests are made from the same address. The attack using

the short-time-use proles may evade the browsing prole based

detection, but it cannot bypass IP address based detection because

requests are from the same IP address. However, as we discussed,

attackmachines created using virtual instances can have dierent IP

addresses by simply rebooting them or leveraging publicly available

proxies, which makes IP address based detection less eective.

Click-Through-Rate (CTR) based detection. CTR is a metric

that measures the number of clicks advertisers receive from a cer-

tain number of impressions. Our attack generate a huge number

of impressions without actually clicking them. Therefore, the CTR

is low. However, this can be bypassed by inserting valid clicks

between our attacks so that CTR can be increased.

Our attack is similar to distributed denial of service (DDoS)

attack since both attacks generate a large amount of trac using

distributed machines. Although detecting the DDoS attack is not

that dicult, the attack is still powerful due to the characteristic

of distributed attack. Once an attack machine is blocked, a newly

created machine can continue the attack. Therefore, it is possible

that our attack can be detected with various features. However, we

believe it is extremely challenging to nullify the attacks.

5.2 Prevention
As it is challenging for ad networks to eectively suppress the

attack, in this section, we suggest practical prevention approaches

for advertisers. One possible solution is to use event-based targeting

strategies. They can track users who actually scroll pages or stay on

the website for a certain period of time. Such event tracking utilities

are already supported by many ad networks [6, 9]. Although the

methods may not completely prevent the attack, it can minimize

the probability of being selected as a target.

6 RELATEDWORK
Browsing prole manipulation. There are two existing studies

that explore attack mechanisms based on browsing prole manipu-

lation. Xing et al. [35] proposed an attack where adversaries can

change the customized content of services from popular providers,

such as YouTube, Amazon and Google, by manipulating browsing

proles. They provided specic attack methods for each services,

and showed what attacks could be possible. While the proposed

method worked well, their study only showed possibility of the

attack. In contrast, our approach provided more practical, and ben-

ecial attack mechanism for advertisers. The second attack is pre-

sented by Meng et al. [26]. They proposed a fraud mechanism to

increase ad revenue for publishers by injecting higher-paying ad-

vertiser websites to publishers’ pages. Although they successfully

increased the revenue, their attacking perspective is dierent.

Ad fraud and mitigation. Representative attacks and counter-

measures were discussed in [15]. Recently, Stone-Gross et al. [32]

performed a large scale study on fraudulent activities in online ad

exchange and suggested practical detection methods.

Recent research are focused on specic fraud activities. Among

them, click fraud/spam is the most popular one. Dave et al. [16]

proposed a method for advertisers to measure click spam rates and

conducted a large scale measurement study of click spam across ten

major ad networks. Faou et al. [18] proposed a click fraud preven-

tion technique using the value chain, the links between fraudulent

actors and legitimate businesses. Their results showed that pres-

suring a limited number of actors would disrupt the ability of click

fraud. Recently, Jaafar et al. [21] proposed FCFraud, a method for

detecting automated clickers from the user side in order to prevent
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from becoming victimized attackers of click fraud. It analyzes web

requests and events from user processes, classies ad requests, and

detects fraudulent ad clicks.

Another prevalent ad fraud activity is impression fraud/spam.

Springborn et al. [31] showed an impression fraud via pay-per-view

(PPV) networks by analyzing ad trac from honeypot websites.

Their results showed that hundreds of millions of fraudulent im-

pressions per day were delivered by the PPV networks. Marciel et

al. [25] proposed tools to audit systems of ve major online video

portals to investigate fraud in video ads.

Ad frauds also target on mobile apps. Crussell et al. [14] per-

formed a study on mobile ad fraud perpetrated by Android apps.

They developed MAdFraud, an automatic app analysis tool, to em-

ulating event and extract ADs. They found that about 30% of apps

made ad request are running in the background and identied 27

apps generating clicks without user interactions. Liu et al. [24]

proposed a system to detect placement frauds that manipulate vi-

sual ads layouts to trigger unintentional clicks from users. They

implemented a tool called DECAF and characterized the prevalence

of ad frauds in 50,000 apps.

Online behavior tracking. Roesner et al. [28] investigated how

third-party web tracking services performed. They showed how

tracking worked, where the data can be stored, and how web track-

ing behaviors are classied. Englehardt et al. [17] proposed Open-

WPM, a web privacy measurement platform, to show how third-

party tracking cookies can be used to reveal browsing histories.

Conti et al. [13] proposed TRAP, a system to unveil Google personal

proles using targeted AD. They focused on revealing topics a user

is interested in instead of her actual browsing histories. Recently,

Bashir et al. [10] showed information ows between ad exchanges

using retargeting ad. They showed how user proles were shared

among ad exchanges by investigating 5,102 retargeting ads. Cahn et

al. [12] assessed a privacy threat caused by the third-party tracking.

Our research was inspired by their study and we utilized them to

build our attack method.

7 CONCLUSION
In this paper, we present a novel ad budget draining attack against

targeted advertisers in the online retargeting ads system. The attack

creates crafted browsing proles based on information collected

by an ad crawler ADHoneyClient. It executes a large-scale attack
using public cloud computing services and repeatedly fetches ads

from the targeted advertisers. We evaluate the ecacy of proposed

methods through an extensive set of experiments. We were able

to reverse engineer the targeting strategies used by 254 (out of

291) public advertisers selected from Alexa Top 500. In addition,

we executed a series of attacks against 3 real-world advertisers.

The evaluation results show that our ad budget draining attack is

eective and ecient. It successfully fetched 40, 958 ads from the

targeted advertisers and drained up to $155.89 from their campaign

budget within an hour.
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