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Abstract—This research explores the possibility of a new anti-
analysis technique, carefully designed to attack weaknesses of
the existing program analysis approaches. It encodes a program
code snippet to hide, and its decoding process is implemented
by a sophisticated state machine that produces multiple outputs
depending on inputs. The key idea of the proposed technique is
to ambiguously decode the program code, resulting in multiple
decoded code snippets that are challenging to distinguish from
each other. Our approach is stealthier than previous similar
approaches as its execution does not exhibit different behaviors
between when it decodes correctly or incorrectly. This paper
also presents analyses of weaknesses of existing techniques and
discusses potential improvements. We implement and evaluate the
proof of concept approach, and our preliminary results show that
the proposed technique imposes various new unique challenges
to the program analysis technique.

Index Terms—anti-analysis, translation, program analysis

I. INTRODUCTION

Program analysis techniques (e.g., static, dynamic, and
symbolic/concolic analyses) have been a key technique to
understand the behavior of a suspicious program. Given a
program under analysis, program analysis techniques aim
to infer behaviors of the program. A typical application in
security is to determine whether the program is malicious
or not. In particular, static analysis techniques [1–5] analyze
target programs without running the code, by parsing the target
program’s code and data. Dynamic analysis [6–8] runs a target
program and observes the runtime behaviors of the program.
Techniques such as symbolic analysis [9–13] and forced
execution techniques [14–18] aim to solve predicate conditions
or forcibly execute branches to increase the coverage.

On the flip side, anti-analysis techniques aim to thwart
the program analysis by attacking the analysis techniques’
weaknesses. For example, obfuscation changes the static rep-
resentation of the program to hide its original semantic.
Packers compress or encrypt program code and unpacks at
runtime. Both techniques limit static/symbolic analysis that
do not run the program code. Evasive techniques introduce

predicate conditions to make certain code triggered only when
the conditions are satisfied, imposing challenges to dynamic
and symbolic analyses that depend on the complexity of the
execution paths and inputs. While forced execution handles
evasive techniques by forcibly executing branches regardless
of the conditions, it suffers from the inaccurate execution
context caused by the ignored predicate conditions.
Proposed Research. This research explores the possibility
of a more advanced anti-analysis technique called Ambiguous
Translation that imposes significant challenges to the existing
analysis techniques. The goal of this idea paper is twofold: (1)
understanding existing program analysis techniques limitations
and (2) demonstrating that developing an anti-analysis tech-
nique exploiting the limitations is possible. The key enabling
concept is our Ambiguous Translator, which takes any inputs
and generates many different outputs. While there can be a few
intended outputs, they are challenging to be identified since all
the inputs go through the same types of operations and outputs
look similar, leading to the extra ambiguity in the translation.

II. BACKGROUND AND RELATED WORK

There has been an arms race between program analysis
and anti-analysis techniques. In this section, we describe how
program analysis and anti-analysis techniques have evolved.
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Fig. 1. Program Analysis Techniques and Anti-analysis Techniques in the
Challenges for Analysis: Evasiveness, Complexity, and Ambiguity.

Anti-static Analysis Techniques. Obfuscation techniques hide
malicious code leveraging various techniques including opaque



predicates [19–21], code insertion/replacement [22–26], en-
cryptions [27, 28], hardware primitives [29, 30], and sub-tree
embedding [31]. However, since code snippets added for
obfuscation (e.g., opaque predicates and dummy code) are
non-essential in the program execution, advanced program
analysis techniques can be enhanced to detect and remove
them [1, 2, 32–34]. Packing is another common tactic to thwart
static analysis. To analyze packed programs, it first needs to
unpack the programs, which is challenging for static analysis.
However, packing is trivially handled by dynamic analysis
since the packed program will first unpack itself to run the
original program’s code. Data obfuscations (e.g., encrypting
code sections and decrypting them at runtime) are easily
handled by dynamic analysis [6–8].
Anti-dynamic/-symbolic Analysis Techniques. Dynamic
analysis techniques run the program code with a concrete
input. The analysis result of the executed path is precise while
identifying various inputs to achieve high code coverage is
challenging. Symbolic and concolic analyses aim to identify
inputs that can cover more predicate conditions. However, they
have difficulty scaling to large programs. Ollivier et al. [24]
present a systematic study of multiple methods to hinder
symbolic execution techniques. Most of anti-symbolic analysis
techniques try to add additional control flow structures such
as predicates loops to increase the number of feasible paths.
Program Analysis Techniques. Figure 1 presents both pro-
gram analysis and anti-analysis techniques in three different
dimensions. First, obfuscation and packing techniques ( O )
implement complex computations that are difficult to be
analyzed by static and symbolic analysis. However, they do
not make the target program evasive, hence, dynamic analysis
(e.g., running the program code) can effectively defeat them.
Second, evasive techniques ( E ) hide malicious code to be
only triggered under a certain condition, making dynamic
analysis ineffective since it requires an input to trigger the
condition. Static analysis techniques are effective in analyzing
them since they do not need to know the predicate conditions.
Third, dynamic code generation techniques ( D ) are challeng-
ing for both dynamic and static analysis because dynamic code
can be generated through a particular path (with a certain
input) and complex string operations. Fourth, symbolic and
concolic analysis can be used to precisely analyze them,
while they are computationally expensive, hence difficult to
scale. Fifth, forced execution techniques can achieve high
code coverage on more complex programs. However, since
they forcibly execute program code regardless of the predicate
conditions, their analysis results can be inaccurate, leading
to false positives/negatives. S represents the state-of-the-art
anti-analysis techniques. Typically, they aim to make the target
program more complex and evasive by carefully combining
dynamic code generation and evasive techniques, amplifying
challenges to existing analysis techniques.
Proposed Approach: Ambiguous Translation. The proposed
approach aims to impose significant challenges to all three
dimensions in Figure 1, including the new dimension Ambi-
guity. Specifically, we introduce extra ambiguity in analysis by

allowing our translator to produce a large number of different
outputs from various inputs. In particular, the input/output
pairs are indistinguishable from each other, making it difficult
to know which output is what is originally intended. Its
translation is done by complex machinery, making it difficult
to analyze for static analysis (high in the complexity axis).
The hidden code is only triggered when a certain condition is
satisfied (e.g., when a particular input is provided), imposing
challenges to dynamic analysis (high in the evasiveness axis).

III. AMBIGUOUS TRANSLATION

We present the design of our approach focusing on how
it imposes challenges in terms of ambiguity (Section III-A),
complexity (Section III-B), and evasiveness (Section III-C).

A. Ambiguity in Translation
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Fig. 2. Typical state machine vs our approach in handling various inputs.

Ambiguity 1: Transition on Every Input. Figure 2-(a) and
(b) show a typical state machine that fails if the state machine
cannot accept the input (Orange shaded row with the input
‘y’). Such a failure reveals that the state machine only expects
a particular input ‘x’, and others are invalid. Figure 2-(c) and
(d) show the proposed approach that allows transition on every
input. Specifically, if an input does not match with any possible
transitions from the current state, it makes a transition to a
state which has a similar transition condition to the provided
input. For example, in Figure 2-(c), there are two transitions
from A to B (if the input is ‘x’) and C (if the input is ‘d’).
If the input is neither ‘x’ nor ‘d’, it calculates the distance
(by computing value differences in the ASCII code) between
the current input and the transition conditions, and selects a
transition with the smallest distance. Observe that in Figure 2-
(d), all the inputs made transitions without any errors, making
it difficult to understand which input is valid or not.
Ambiguity 2: Dynamic Output Translation. Our approach
produces different outputs with respect to the provided inputs
according to the state transition rules. Specifically, when the
input is not exactly matched with the transition’s input, it
applies the difference between the input and the transition’s
input to the output translation rule. This allows our approach
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Fig. 3. Examples of dynamic output translation. Computations, i.e., (b) and
(c), are on ASCII code values.

to generating a certain output without annotating it on the state
machine. For example, assume that we want to generate ‘M’ as
output in Figure 2-(c) and (d). Observe that the state machine
does not include them in the state transitions. It only has ‘O’
and ‘P’. However, by providing an input ‘v’ that is smaller
(in terms of ASCII code) than the annotated input (‘x’), the
output is generated as smaller than the annotated output ‘M’.
The input ‘a’ also generates ‘M’ in the same way.

Figure 3-(a) shows a part of the example state machine.
Figure 3-(b) and (c) show how the output is generated when
the input ‘Recommended’ is provided. Specifically, for each
character, it subtracts the ASCII code value of the characters
and takes the value of the result. We then subtract the value to
the output annotated with the transition to derive the output.

1. If the input is exactly matched with the input annotated
on the automaton, it will produce the same output as
annotated (the first and fourth rows).

2. If the given input is different from inputs annotated with
the transitions, the state machine finds the transition with
the closest delta between the given input and annotated
input. For example, the input “Recommended” is closer
to “reductions∼” than “deductions” according to the
delta computation. Hence, the transition to B is chosen,
resulting in “@fwrite($f,” ( 1 ).

3. If the input is “reflection.”, it will make the
transition from state A to state B and the output
will be “‘fzoajt#/o” ( 2 ). Similarly, if the input is
“descriptor”, it outputs “mathmatics” ( 3 ). Observe
that to know all possible outputs, one needs to search a
number of inputs on each transition.

Ambiguity 3: Indiscernible Translation Execution. Deni-
able encryption [35–38] aims to provide similar promises to
our approach: generating multiple plausible deciphered texts
when incorrect encryption keys are used. Figure 4 illustrates
how it works. Essentially, its ciphertext includes decoys that
are indistinguishable from the secret and maps incorrect keys
to the decoys. However, since having decoys leads to a larger
encrypted text, some incorrect keys will be mapped to random
values, which unfortunately is distinguishable from the secret.

There are three limitations: (1) Having multiple decoys

Decoy 1 Decoy 2 ... SecretRandom

Incorrect 
Key 1

Incorrect 
Key 2 Correct KeyIncorrect 

Key 3

Indistinguishable
Indistinguishable

Distinguishable

Deciphered texts

Key-Data 
Mapping Layer

Fig. 4. Example of a deniable encryption implementation.

makes the encrypted text large. Also, the decoys must be
carefully chosen, which requires significant manual effort.
(2) There are still some keys that are mapped to random
deciphered texts which are distinguishable from the secret. (3)
To implement the deniable encryption, one needs to implement
the key-data mapping layer that maps the keys to the data to
decipher. In practice, the number of keys and deciphered texts
can be revealed by analyzing the execution of the layer.

Our approach does not have the decoys, which makes every
output indistinguishable from the secret. In addition, we do
not have the mapping layer, making the execution of any keys
indistinguishable as well.

B. Complex State Machine

Translation of inputs and outputs via a state machine is
challenging to analyze for static analysis. Specifically, the code
for state machine is rather a simple loop and its behavior
is largely dependent on the input, which imposes significant
challenges to static analysis. To increase the complexity, we
add a number of dummy states and state transitions that
are indistinguishable from other states and transitions. Note
that the dummy states/transitions are not used to process an
intended input, hence, they do not impact the operation of the
state machine on the intended input. They slightly slow down
the performance because those dummy states should be also
considered during the state transition.

C. Evasive State Machine

Since the dummy states and transitions are indistinguishable
from other states and transitions, analysis techniques need
to examine every state transition. Note that this challenge
depends on the indistinguishability of the states and state tran-
sitions. For dummy states and transitions, we generate them
by slightly modifying the original states/transitions for the
intended input. Specifically, the perturbed dummy states and
transitions have small edit distances from the original states
and transitions, making them indistinguishable. Moreover, we
make the execution of the state transition indistinguishable.

IV. PRELIMINARY EVALUATION

We implemented a proof of concept translator written in
PHP (2314 LOC for core translation logic).
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TABLE I
DETECTION RESULTS ON MALICIOUS AND BENIGN SAMPLES.

Obfuscator PHP Mal. Finder Shellray MalMax

Mal. Benign Mal. Benign Mal. Benign

PHP Obfuscator [39] 399/413 161/573 479/524 0/573 573/573 0/573

YAK Pro [40] 264/413 139/573 239/524 1/573 573/573 0/573

Best PHP Obfuscator [41] 412/413 573/573 505/524 557/573 573/573 0/573

Simple PHP 413/413 573/573 524/524 573/573 573/573 0/573

Our approach 0/413 0/573 0/524 0/573 0/573 0/573

Green cells on ‘Mal.’ and ‘Benign’ columns indicate that they have no true
positive and false positive, respectively (lighter green if 5∼50%). Red cells
represent the opposite (undesirable) results.

A. Against Static and Dynamic Analysis

We compare our approach with state-of-the-art obfuscators.
Obfuscator/malware Detector Selection. We select four ob-
fuscators [39–42] and two malware detectors [43, 44] based
on their popularity. In addition, a forced execution based PHP
malware scanning tool called MalMax [45] is selected to
represent the forced execution based analysis technique.
Sample Selection. We collect 573 server-side malware from
known malware collection repositories [46–56]. The samples
consist of eight types: webshells, backdoors, bypassers, up-
loaders, spammers, SQLShells, reverse shells, and flooders.
For each type, we collect a similar number of samples (e.g.,
61∼79). From the 573 malware we collected, for each tool,
we use a subset of the samples that the tool can detect them
as malicious. Specifically, PHP Malware Finder and Shellray
detect 413 and 524 samples, respectively.
Result for Malicious Samples. Table I shows that the tested
malware detection tools fail to handle our approach (0%). Note
that MalMax is a dynamic analysis technique that can detect
malware without the signature. While other three tools fail to
detect us as they do not know our approach, results in the
MalMax show the effectiveness of our approach.

This is because MalMax focuses on executing all statements
without precisely identifying attack triggering inputs. Simply
executing all statements of a target is sufficient for analyzing
the existing obfuscators but not sufficient for our approach.
False Positives. Some malware detectors often consider any
obfuscated programs as malicious, causing high false positive
rates. To understand false positive, 573 benign PHP program
files from popular PHP programs’ codebases [57–60] are
collected. Initially, none of the 573 benign files are flagged as
malware by the existing detectors. After they are obfuscated,
we observe many of them are detected as malware (i.e., high
false positive rates) by PHP Malware Finder and ShellRay.

B. Against Manual Analysis (via dynamic analysis)

We use Xdebug [61] to monitor our approach’s execution to
infer the content of the intended input/output. Xdebug is a PHP
debugging extension, providing various debugging primitives
such as single stepping, variable dumps, and stack traces.
Analyzing Executed Statements. The analyst traces all state-
ments that read and write inputs and values that are computed
from inputs (i.e., values that are data dependent on the inputs).
Unfortunately, as a state machine is implemented as a loop that
makes transitions according to the current input, the resulting

statement traces are identical when it delivers intended output
and unindented output, meaning that the statement traces are
indistinguishable.
Analyzing Values from Executed Statements. One can also
dump all the values of the variables used in the executed
statements. However, such analysis is only useful when one
already knows the intended input. Without knowing that,
analyzing values from an execution that does not deliver a
malicious payload does not help. Note that forced execution
techniques only forcibly run the statements without the correct
input values, meaning that their analysis is also ineffective.

C. Against Symbolic Analysis

We apply symbolic analysis to our proof of concept im-
plementation and find out a practical limitation of symbolic
analysis techniques. That is, symbolic analysis in practice
uses an optimization strategy that aims to find one input
that drives the execution to the point of interest, instead of
enumerating all possible inputs. However, due to the ambiguity
in our approach, even one reaches a particular state, the
identified input may not be the input of interest. For example,
in Figure 5-(a), the array $fn represents a function name.
Before it is invoked at line 6, it is constructed at lines 3–5
after satisfying multiple path conditions at line 2. Symbolic
analysis encodes the path conditions and gets one solution
shown in Figure 5-(b) from the underlying constraint solver.
The execution successfully goes into the true branch and
invokes the function $f. However, it invokes function uniqid
instead of the originally intended function unlink shown in
Figure 5-(c). Given this branch has been successfully explored,
the symbolic analysis will not try other solutions, leaving other
existing outputs undiscovered.

1
2

3
4
5
6
7

(a) Source Code

(b) Resolved $fn[] and $f

(c) Intended $fn[] and $f

$fn = array(...);
if ($fn[0] >= 85 && $fn[1] >= 78 &&

$fn[2] >= 73 && $fn[3] >= 81 &&
$fn[4] >= 73 && $fn[5] >= 68 ) {

foreach($fn as $c)
$f = $f.chr($c);

$f = strtolower($f);
$f(...);

}

Variable Value

$fn[] {85,78,73,81,73,68}

$f “uniqid”

Variable Value

$fn[] {117,110,108,105,110,107}

$f “unlink”

Fig. 5. Symbolic execution exploring a single input.

V. FUTURE DIRECTIONS

Understanding Generality of the Technique. We imple-
ment our prototype in PHP, the idea is general and can be
implemented in other script languages that support dynamic
constructs such as eval(). Immediate future work could be
implementing our approach in other programming languages.
Analysis Technique against our Approach. To defeat our
approach, a specialized analysis technique for our state ma-
chine is needed. Specifically, it should compute all possible
transitions and potential outputs and identify all the code that
can be translated. A static analysis approach can be used to
identify all the states and transitions. Then, one can leverage
symbolic analysis to identify inputs that can lead to valid
outputs. Note that the definition of a valid output varies based
on the context. If one knows the grammar of the output text,
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one can prune out inputs that may not fit the grammar rule.
For example, if the output should be a valid function call,
and output should follow the ‘string()’ format. Inputs that
cannot generate the output can be pruned out.
Enhancing the Translation Method. The current translation
in each transition of the state machine in our approach is es-
sentially a simple substitution cipher. Understanding tradeoffs
of using other ciphers such as block/stream ciphers [62–65] is
a promising future direction to further enhance the proposed
approach. Moreover, the proposed technique requires a large
state machine to process a non-trivial size of input. Reducing
the size of the state machine is also critical. A possible option
can be reusing states and transitions in the state machine.
Runtime Environment against the Proposed Approach. It
is possible that a cybercriminal may leverage the proposed
technique to deliver a malicious payload secretly. A practical
solution to prevent the proposed approach is developing a
safe runtime environment that can restrict malicious behaviors
executed by the proposed technique (e.g., sandboxing). For
example, since the proposed approach needs to use dynamic
code generation techniques, one can thwart the attack by
disabling primitives for dynamic code generation.
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