
Defeating Program Analysis Techniques via
Ambiguous Translation

Chijung Jung∗, Doowon Kim†, Weihang Wang‡, Yunhui Zheng§, Kyu Hyung Lee¶, and Yonghwi Kwon∗
∗Department of Computer Science, University of Virginia, Charlottesville, VA, USA

{cj5kd, yongkwon}@virginia.edu
†Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA

doowon@utk.edu
‡Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, USA

weihangw@buffalo.edu
§IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

zhengyu@us.ibm.com
¶Department of Computer Science, University of Georgia, Athens, GA, USA

kyuhlee@uga.edu

Abstract—This research explores the possibility of a new anti-
analysis technique, carefully designed to attack weaknesses of
the existing program analysis approaches. It encodes a program
code snippet to hide, and its decoding process is implemented
by a sophisticated state machine that produces multiple outputs
depending on inputs. The key idea of the proposed technique is
to ambiguously decode the program code, resulting in multiple
decoded code snippets that are challenging to distinguish from
each other. Our approach is stealthier than previous similar
approaches as its execution does not exhibit different behaviors
between when it decodes correctly or incorrectly. This paper
also presents analyses of weaknesses of existing techniques and
discusses potential improvements. We implement and evaluate the
proof of concept approach, and our preliminary results show that
the proposed technique imposes various new unique challenges
to the program analysis technique.

Index Terms—anti-analysis, translation, program analysis

I. INTRODUCTION

Program analysis techniques (e.g., static, dynamic, and
symbolic/concolic analyses) have been a key technique to
understand the behavior of a suspicious program. Given a
program under analysis, program analysis techniques aim
to infer behaviors of the program. A typical application in
security is to determine whether the program is malicious
or not. In particular, static analysis techniques [1–5] analyze
target programs without running the code, by parsing the target
program’s code and data. Dynamic analysis [6–8] runs a target
program and observes the runtime behaviors of the program.
Techniques such as symbolic analysis [9–13] and forced
execution techniques [14–18] aim to solve predicate conditions
or forcibly execute branches to increase the coverage.

On the flip side, anti-analysis techniques aim to thwart
the program analysis by attacking the analysis techniques’
weaknesses. For example, obfuscation changes the static rep-
resentation of the program to hide its original semantic.
Packers compress or encrypt program code and unpacks at
runtime. Both techniques limit static/symbolic analysis that
do not run the program code. Evasive techniques introduce

predicate conditions to make certain code triggered only when
the conditions are satisfied, imposing challenges to dynamic
and symbolic analyses that depend on the complexity of the
execution paths and inputs. While forced execution handles
evasive techniques by forcibly executing branches regardless
of the conditions, it suffers from the inaccurate execution
context caused by the ignored predicate conditions.
Proposed Research. This research explores the possibility
of a more advanced anti-analysis technique called Ambiguous
Translation that imposes significant challenges to the existing
analysis techniques. The goal of this idea paper is twofold: (1)
understanding existing program analysis techniques limitations
and (2) demonstrating that developing an anti-analysis tech-
nique exploiting the limitations is possible. The key enabling
concept is our Ambiguous Translator, which takes any inputs
and generates many different outputs. While there can be a few
intended outputs, they are challenging to be identified since all
the inputs go through the same types of operations and outputs
look similar, leading to the extra ambiguity in the translation.

II. BACKGROUND AND RELATED WORK

There has been an arms race between program analysis
and anti-analysis techniques. In this section, we describe how
program analysis and anti-analysis techniques have evolved.

S

Dynamic

Analysis

Static

Analysis

Forced

Execution

Symbolic

Execution

O

D

E

A

S

O

D

E

A
Ambiguous Translation

(Proposed approach)

Obfuscation/Packing

Dynamic

code generation

Evasive code

State of the art

anti-analysis

Fig. 1. Program Analysis Techniques and Anti-analysis Techniques in the
Challenges for Analysis: Evasiveness, Complexity, and Ambiguity.

Anti-static Analysis Techniques. Obfuscation techniques hide
malicious code leveraging various techniques including opaque

predicates [19–21], code insertion/replacement [22–26], en-
cryptions [27, 28], hardware primitives [29, 30], and sub-tree
embedding [31]. However, since code snippets added for
obfuscation (e.g., opaque predicates and dummy code) are
non-essential in the program execution, advanced program
analysis techniques can be enhanced to detect and remove
them [1, 2, 32–34]. Packing is another common tactic to thwart
static analysis. To analyze packed programs, it first needs to
unpack the programs, which is challenging for static analysis.
However, packing is trivially handled by dynamic analysis
since the packed program will first unpack itself to run the
original program’s code. Data obfuscations (e.g., encrypting
code sections and decrypting them at runtime) are easily
handled by dynamic analysis [6–8].
Anti-dynamic/-symbolic Analysis Techniques. Dynamic
analysis techniques run the program code with a concrete
input. The analysis result of the executed path is precise while
identifying various inputs to achieve high code coverage is
challenging. Symbolic and concolic analyses aim to identify
inputs that can cover more predicate conditions. However, they
have difficulty scaling to large programs. Ollivier et al. [24]
present a systematic study of multiple methods to hinder
symbolic execution techniques. Most of anti-symbolic analysis
techniques try to add additional control flow structures such
as predicates loops to increase the number of feasible paths.
Program Analysis Techniques. Figure 1 presents both pro-
gram analysis and anti-analysis techniques in three different
dimensions. First, obfuscation and packing techniques (O)
implement complex computations that are difficult to be
analyzed by static and symbolic analysis. However, they do
not make the target program evasive, hence, dynamic analysis
(e.g., running the program code) can effectively defeat them.
Second, evasive techniques (E) hide malicious code to be
only triggered under a certain condition, making dynamic
analysis ineffective since it requires an input to trigger the
condition. Static analysis techniques are effective in analyzing
them since they do not need to know the predicate conditions.
Third, dynamic code generation techniques (D) are challeng-
ing for both dynamic and static analysis because dynamic code
can be generated through a particular path (with a certain
input) and complex string operations. Fourth, symbolic and
concolic analysis can be used to precisely analyze them,
while they are computationally expensive, hence difficult to
scale. Fifth, forced execution techniques can achieve high
code coverage on more complex programs. However, since
they forcibly execute program code regardless of the predicate
conditions, their analysis results can be inaccurate, leading
to false positives/negatives. S represents the state-of-the-art
anti-analysis techniques. Typically, they aim to make the target
program more complex and evasive by carefully combining
dynamic code generation and evasive techniques, amplifying
challenges to existing analysis techniques.
Proposed Approach: Ambiguous Translation. The proposed
approach aims to impose significant challenges to all three
dimensions in Figure 1, including the new dimension Ambi-
guity. Specifically, we introduce extra ambiguity in analysis by

allowing our translator to produce a large number of different
outputs from various inputs. In particular, the input/output
pairs are indistinguishable from each other, making it difficult
to know which output is what is originally intended. Its
translation is done by complex machinery, making it difficult
to analyze for static analysis (high in the complexity axis).
The hidden code is only triggered when a certain condition is
satisfied (e.g., when a particular input is provided), imposing
challenges to dynamic analysis (high in the evasiveness axis).

III. AMBIGUOUS TRANSLATION

We present the design of our approach focusing on how
it imposes challenges in terms of ambiguity (Section III-A),
complexity (Section III-B), and evasiveness (Section III-C).

A. Ambiguity in Translation

A B
In: ‘x’

Out: ‘M’

Cur. State Input Output Next State

A x M B

A y Error A

(a) State Machine
(b) State Transitions in a
Typical State Machine

(d) State Transitions in the
Ambiguous Translation

A

B
In: ‘x’

Out: ‘O’

(c) Ambiguous Translation
State Machine

In: close to ‘x’

Out: ‘O’ - (‘x’ - $In)
Cur. State Input Output Next State

A v M B

A w N B

A x O B

A y P B

A a M C

A b N C

A c O C

A d P C

($In means the current input)

C
In: ‘d’

Out: ‘P’

In: close to ‘d’

Out: ‘P’ - (‘d’ - $In)

Fig. 2. Typical state machine vs our approach in handling various inputs.

Ambiguity 1: Transition on Every Input. Figure 2-(a) and
(b) show a typical state machine that fails if the state machine
cannot accept the input (Orange shaded row with the input
‘y’). Such a failure reveals that the state machine only expects
a particular input ‘x’, and others are invalid. Figure 2-(c) and
(d) show the proposed approach that allows transition on every
input. Specifically, if an input does not match with any possible
transitions from the current state, it makes a transition to a
state which has a similar transition condition to the provided
input. For example, in Figure 2-(c), there are two transitions
from A to B (if the input is ‘x’) and C (if the input is ‘d’).
If the input is neither ‘x’ nor ‘d’, it calculates the distance
(by computing value differences in the ASCII code) between
the current input and the transition conditions, and selects a
transition with the smallest distance. Observe that in Figure 2-
(d), all the inputs made transitions without any errors, making
it difficult to understand which input is valid or not.
Ambiguity 2: Dynamic Output Translation. Our approach
produces different outputs with respect to the provided inputs
according to the state transition rules. Specifically, when the
input is not exactly matched with the transition’s input, it
applies the difference between the input and the transition’s
input to the output translation rule. This allows our approach

2

A

B

C

…

In: “reductions~”

In: “deductions”

Out: “`fxx_{i).tF”

Out: “maez^lmdbt”

(a) Automaton

(d) Output Translation Results

…

…

Cur. State Input Output Next State

A reductions~ `fxx_{i).tF B

A Recommended @fwrite($f, B

A reflection. `fzoajt#/o B

A deductions maez^lmdbt C

A descriptor mathmatics C

1

2

3

(c) Dynamic Output Computation

R e c o m m e n d e d

r e d u c t i o n s ~

32 0 1 6 -10 7 4 1 10 14 26

` f x x _ { i) . t F

@ f w r i t e ($ f ,

- 32 0 1 6 -10 7 4 1 10 14 26

(b) Input Delta Computation

-

Legend

Benign Output
Generated

Malicious Output
Generated

Benign Output
Generated (Guess Failed)

Fig. 3. Examples of dynamic output translation. Computations, i.e., (b) and
(c), are on ASCII code values.

to generating a certain output without annotating it on the state
machine. For example, assume that we want to generate ‘M’ as
output in Figure 2-(c) and (d). Observe that the state machine
does not include them in the state transitions. It only has ‘O’
and ‘P’. However, by providing an input ‘v’ that is smaller
(in terms of ASCII code) than the annotated input (‘x’), the
output is generated as smaller than the annotated output ‘M’.
The input ‘a’ also generates ‘M’ in the same way.

Figure 3-(a) shows a part of the example state machine.
Figure 3-(b) and (c) show how the output is generated when
the input ‘Recommended’ is provided. Specifically, for each
character, it subtracts the ASCII code value of the characters
and takes the value of the result. We then subtract the value to
the output annotated with the transition to derive the output.

1. If the input is exactly matched with the input annotated
on the automaton, it will produce the same output as
annotated (the first and fourth rows).

2. If the given input is different from inputs annotated with
the transitions, the state machine finds the transition with
the closest delta between the given input and annotated
input. For example, the input “Recommended” is closer
to “reductions∼” than “deductions” according to the
delta computation. Hence, the transition to B is chosen,
resulting in “@fwrite($f,” (1).

3. If the input is “reflection.”, it will make the
transition from state A to state B and the output
will be “‘fzoajt#/o” (2). Similarly, if the input is
“descriptor”, it outputs “mathmatics” (3). Observe
that to know all possible outputs, one needs to search a
number of inputs on each transition.

Ambiguity 3: Indiscernible Translation Execution. Deni-
able encryption [35–38] aims to provide similar promises to
our approach: generating multiple plausible deciphered texts
when incorrect encryption keys are used. Figure 4 illustrates
how it works. Essentially, its ciphertext includes decoys that
are indistinguishable from the secret and maps incorrect keys
to the decoys. However, since having decoys leads to a larger
encrypted text, some incorrect keys will be mapped to random
values, which unfortunately is distinguishable from the secret.

There are three limitations: (1) Having multiple decoys

Decoy 1 Decoy 2 ... SecretRandom

Incorrect
Key 1

Incorrect
Key 2 Correct KeyIncorrect

Key 3

Indistinguishable
Indistinguishable

Distinguishable

Deciphered texts

Key-Data
Mapping Layer

Fig. 4. Example of a deniable encryption implementation.

makes the encrypted text large. Also, the decoys must be
carefully chosen, which requires significant manual effort.
(2) There are still some keys that are mapped to random
deciphered texts which are distinguishable from the secret. (3)
To implement the deniable encryption, one needs to implement
the key-data mapping layer that maps the keys to the data to
decipher. In practice, the number of keys and deciphered texts
can be revealed by analyzing the execution of the layer.

Our approach does not have the decoys, which makes every
output indistinguishable from the secret. In addition, we do
not have the mapping layer, making the execution of any keys
indistinguishable as well.

B. Complex State Machine

Translation of inputs and outputs via a state machine is
challenging to analyze for static analysis. Specifically, the code
for state machine is rather a simple loop and its behavior
is largely dependent on the input, which imposes significant
challenges to static analysis. To increase the complexity, we
add a number of dummy states and state transitions that
are indistinguishable from other states and transitions. Note
that the dummy states/transitions are not used to process an
intended input, hence, they do not impact the operation of the
state machine on the intended input. They slightly slow down
the performance because those dummy states should be also
considered during the state transition.

C. Evasive State Machine

Since the dummy states and transitions are indistinguishable
from other states and transitions, analysis techniques need
to examine every state transition. Note that this challenge
depends on the indistinguishability of the states and state tran-
sitions. For dummy states and transitions, we generate them
by slightly modifying the original states/transitions for the
intended input. Specifically, the perturbed dummy states and
transitions have small edit distances from the original states
and transitions, making them indistinguishable. Moreover, we
make the execution of the state transition indistinguishable.

IV. PRELIMINARY EVALUATION

We implemented a proof of concept translator written in
PHP (2314 LOC for core translation logic).

3

TABLE I
DETECTION RESULTS ON MALICIOUS AND BENIGN SAMPLES.

Obfuscator PHP Mal. Finder Shellray MalMax

Mal. Benign Mal. Benign Mal. Benign

PHP Obfuscator [39] 399/413 161/573 479/524 0/573 573/573 0/573

YAK Pro [40] 264/413 139/573 239/524 1/573 573/573 0/573

Best PHP Obfuscator [41] 412/413 573/573 505/524 557/573 573/573 0/573

Simple PHP 413/413 573/573 524/524 573/573 573/573 0/573

Our approach 0/413 0/573 0/524 0/573 0/573 0/573

Green cells on ‘Mal.’ and ‘Benign’ columns indicate that they have no true
positive and false positive, respectively (lighter green if 5∼50%). Red cells
represent the opposite (undesirable) results.

A. Against Static and Dynamic Analysis

We compare our approach with state-of-the-art obfuscators.
Obfuscator/malware Detector Selection. We select four ob-
fuscators [39–42] and two malware detectors [43, 44] based
on their popularity. In addition, a forced execution based PHP
malware scanning tool called MalMax [45] is selected to
represent the forced execution based analysis technique.
Sample Selection. We collect 573 server-side malware from
known malware collection repositories [46–56]. The samples
consist of eight types: webshells, backdoors, bypassers, up-
loaders, spammers, SQLShells, reverse shells, and flooders.
For each type, we collect a similar number of samples (e.g.,
61∼79). From the 573 malware we collected, for each tool,
we use a subset of the samples that the tool can detect them
as malicious. Specifically, PHP Malware Finder and Shellray
detect 413 and 524 samples, respectively.
Result for Malicious Samples. Table I shows that the tested
malware detection tools fail to handle our approach (0%). Note
that MalMax is a dynamic analysis technique that can detect
malware without the signature. While other three tools fail to
detect us as they do not know our approach, results in the
MalMax show the effectiveness of our approach.

This is because MalMax focuses on executing all statements
without precisely identifying attack triggering inputs. Simply
executing all statements of a target is sufficient for analyzing
the existing obfuscators but not sufficient for our approach.
False Positives. Some malware detectors often consider any
obfuscated programs as malicious, causing high false positive
rates. To understand false positive, 573 benign PHP program
files from popular PHP programs’ codebases [57–60] are
collected. Initially, none of the 573 benign files are flagged as
malware by the existing detectors. After they are obfuscated,
we observe many of them are detected as malware (i.e., high
false positive rates) by PHP Malware Finder and ShellRay.

B. Against Manual Analysis (via dynamic analysis)

We use Xdebug [61] to monitor our approach’s execution to
infer the content of the intended input/output. Xdebug is a PHP
debugging extension, providing various debugging primitives
such as single stepping, variable dumps, and stack traces.
Analyzing Executed Statements. The analyst traces all state-
ments that read and write inputs and values that are computed
from inputs (i.e., values that are data dependent on the inputs).
Unfortunately, as a state machine is implemented as a loop that
makes transitions according to the current input, the resulting

statement traces are identical when it delivers intended output
and unindented output, meaning that the statement traces are
indistinguishable.
Analyzing Values from Executed Statements. One can also
dump all the values of the variables used in the executed
statements. However, such analysis is only useful when one
already knows the intended input. Without knowing that,
analyzing values from an execution that does not deliver a
malicious payload does not help. Note that forced execution
techniques only forcibly run the statements without the correct
input values, meaning that their analysis is also ineffective.

C. Against Symbolic Analysis

We apply symbolic analysis to our proof of concept im-
plementation and find out a practical limitation of symbolic
analysis techniques. That is, symbolic analysis in practice
uses an optimization strategy that aims to find one input
that drives the execution to the point of interest, instead of
enumerating all possible inputs. However, due to the ambiguity
in our approach, even one reaches a particular state, the
identified input may not be the input of interest. For example,
in Figure 5-(a), the array $fn represents a function name.
Before it is invoked at line 6, it is constructed at lines 3–5
after satisfying multiple path conditions at line 2. Symbolic
analysis encodes the path conditions and gets one solution
shown in Figure 5-(b) from the underlying constraint solver.
The execution successfully goes into the true branch and
invokes the function $f. However, it invokes function uniqid
instead of the originally intended function unlink shown in
Figure 5-(c). Given this branch has been successfully explored,
the symbolic analysis will not try other solutions, leaving other
existing outputs undiscovered.

1
2

3
4
5
6
7

(a) Source Code

(b) Resolved $fn[] and $f

(c) Intended $fn[] and $f

$fn = array(...);
if ($fn[0] >= 85 && $fn[1] >= 78 &&

$fn[2] >= 73 && $fn[3] >= 81 &&
$fn[4] >= 73 && $fn[5] >= 68) {

foreach($fn as $c)
$f = $f.chr($c);

$f = strtolower($f);
$f(...);

}

Variable Value

$fn[] {85,78,73,81,73,68}

$f “uniqid”

Variable Value

$fn[] {117,110,108,105,110,107}

$f “unlink”

Fig. 5. Symbolic execution exploring a single input.

V. FUTURE DIRECTIONS

Understanding Generality of the Technique. We imple-
ment our prototype in PHP, the idea is general and can be
implemented in other script languages that support dynamic
constructs such as eval(). Immediate future work could be
implementing our approach in other programming languages.
Analysis Technique against our Approach. To defeat our
approach, a specialized analysis technique for our state ma-
chine is needed. Specifically, it should compute all possible
transitions and potential outputs and identify all the code that
can be translated. A static analysis approach can be used to
identify all the states and transitions. Then, one can leverage
symbolic analysis to identify inputs that can lead to valid
outputs. Note that the definition of a valid output varies based
on the context. If one knows the grammar of the output text,

4

one can prune out inputs that may not fit the grammar rule.
For example, if the output should be a valid function call,
and output should follow the ‘string()’ format. Inputs that
cannot generate the output can be pruned out.
Enhancing the Translation Method. The current translation
in each transition of the state machine in our approach is es-
sentially a simple substitution cipher. Understanding tradeoffs
of using other ciphers such as block/stream ciphers [62–65] is
a promising future direction to further enhance the proposed
approach. Moreover, the proposed technique requires a large
state machine to process a non-trivial size of input. Reducing
the size of the state machine is also critical. A possible option
can be reusing states and transitions in the state machine.
Runtime Environment against the Proposed Approach. It
is possible that a cybercriminal may leverage the proposed
technique to deliver a malicious payload secretly. A practical
solution to prevent the proposed approach is developing a
safe runtime environment that can restrict malicious behaviors
executed by the proposed technique (e.g., sandboxing). For
example, since the proposed approach needs to use dynamic
code generation techniques, one can thwart the attack by
disabling primitives for dynamic code generation.

ACKNOWLEDGMENT

We thank the anonymous referees for their constructive
feedback. The research was supported, in part, by NSF un-
der awards 1916499, 1908021, 1850392, 1909856, 1916500,
2047980, and a Mozilla Research Award (2019). Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsor.

REFERENCES

[1] J. Dahse and J. Schwenk, “Rips-a static source code analyser for
vulnerabilities in php scripts,” Retrieved: February, vol. 28, p. 2012,
2010.

[2] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool
for detecting web application vulnerabilities,” in 2006 IEEE Symposium
on Security and Privacy (S&P). IEEE, 2006, pp. 6–pp.

[3] D. Ryan, “Implementing basic static code analysis into integrated
development environments (ides) to reduce software vulnerablitilies,” A
Report submitted in partial fulfillment of the regulations governing the
award of the Degree of BSc (Honours) Ethical Hacking for Computer
Security at the University of Northumbria at Newcastle, vol. 2012, 2011.

[4] D. Hauzar and J. Kofroň, “Weverca: Web applications verification for
php,” in International Conference on Software Engineering and Formal
Methods. Springer, 2014, pp. 296–301.

[5] E. Kneuss, P. Suter, and V. Kuncak, “Phantm: Php analyzer for type
mismatch,” in FSE’10 Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering, no.
CONF, 2010.

[6] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
“Automatically identifying trigger-based behavior in malware,” in Botnet
Detection. Springer, 2008, pp. 65–88.

[7] G. Suarez-Tangil, J. E. Tapiador, F. Lombardi, and R. Di Pietro,
“Thwarting obfuscated malware via differential fault analysis,” Com-
puter, vol. 47, no. 6, pp. 24–31, 2014.

[8] J. Mao, J. Bian, G. Bai, R. Wang, Y. Chen, Y. Xiao, and Z. Liang,
“Detecting malicious behaviors in javascript applications,” IEEE Access,
vol. 6, pp. 12 284–12 294, 2018.

[9] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in OSDI, vol. 8, 2008, pp. 209–224.

[10] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
symbolic execution framework for javascript,” in 2010 IEEE Symposium
on Security and Privacy. IEEE, 2010, pp. 513–528.

[11] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE symposium on Security
and privacy. IEEE, 2010, pp. 317–331.

[12] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[13] K. Sen, G. Necula, L. Gong, and W. Choi, “Multise: Multi-path symbolic
execution using value summaries,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 842–853.

[14] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, and
D. Xu, “J-force: Forced execution on javascript,” in Proceedings of the
26th international conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2017, pp. 897–906.

[15] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: force-
executing binary programs for security applications,” in 23rd USENIX
Security Symposium, 2014, pp. 829–844.

[16] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting private
api abuse in ios applications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 44–
56.

[17] J. Wilhelm and T.-c. Chiueh, “A forced sampled execution approach
to kernel rootkit identification,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007, pp. 219–235.

[18] R. Johnson and A. Stavrou, “Forced-path execution for android applica-
tions on x86 platforms,” in 2013 IEEE Seventh International Conference
on Software Security and Reliability Companion. IEEE, 2013, pp. 188–
197.

[19] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). IEEE, 2007, pp. 421–430.

[20] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-
silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1998, pp. 184–196.

[21] B. Sheridan and M. Sherr, “On manufacturing resilient opaque con-
structs against static analysis,” in European Symposium on Research in
Computer Security. Springer, 2016, pp. 39–58.

[22] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals.” in USENIX Security Symposium, 2007, pp. 275–290.

[23] B. Lee, Y. Kim, and J. Kim, “binob+: a framework for potent and
stealthy binary obfuscation,” in Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security. ACM, 2010,
pp. 271–281.

[24] M. Ollivier, S. Bardin, R. Bonichon, and J.-Y. Marion, “How to
kill symbolic deobfuscation for free (or: Unleashing the potential
of path-oriented protections),” in Proceedings of the 35th Annual
Computer Security Applications Conference, ser. ACSAC ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
177–189. [Online]. Available: https://doi.org/10.1145/3359789.3359812

[25] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications,
ser. ACSAC ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 189–200. [Online]. Available: https://doi.org/10.
1145/2991079.2991114

[26] Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to combat
symbolic execution,” in Proceedings of the 16th European Conference on
Research in Computer Security, ser. ESORICS’11. Berlin, Heidelberg:
Springer-Verlag, 2011, p. 210–226.

[27] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation.” in NDSS, 2008.

[28] Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to combat
symbolic execution,” in European Symposium on Research in Computer
Security. Springer, 2011, pp. 210–226.

[29] H. Chen, L. Yuan, X. Wu, B. Zang, B. Huang, and P.-c. Yew, “Control
flow obfuscation with information flow tracking,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2009, pp. 391–400.

5

https://doi.org/10.1145/3359789.3359812
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/2991079.2991114

[30] S. Schrittwieser, S. Katzenbeisser, P. Kieseberg, M. Huber, M. Leithner,
M. Mulazzani, and E. Weippl, “Covert computation: Hiding code in
code for obfuscation purposes,” in Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security.
ACM, 2013, pp. 529–534.

[31] A. Fass, M. Backes, and B. Stock, “Hidenoseek: Camouflaging ma-
licious javascript in benign asts,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1899–1913.

[32] J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 757–768.

[33] Q. Yang, “GitHub - quanyang/Taint-em-All: A taint analysis tool for the
PHP language,” 2019, https://github.com/quanyang/Taint-em-All.

[34] O. Olivo, “GitHub - olivo/TaintPHP: Static Taint Analysis for PHP web
applications,” 2016, https://github.com/olivo/TaintPHP.

[35] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, “Deniable encryp-
tion,” in Annual International Cryptology Conference. Springer, 1997,
pp. 90–104.

[36] A. Sahai and B. Waters, “How to use indistinguishability obfuscation:
deniable encryption, and more,” in Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, 2014, pp. 475–484.

[37] M. Dürmuth and D. M. Freeman, “Deniable encryption with negligible
detection probability: An interactive construction,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2011, pp. 610–626.

[38] M. Klonowski, P. Kubiak, and M. Kutyłowski, “Practical deniable
encryption,” in International Conference on Current Trends in Theory
and Practice of Computer Science. Springer, 2008, pp. 599–609.

[39] M. Fonk, “GitHub - naneau/php-obfuscator: an ”obfuscator” for
PSR/OOp PHP code,” 2019, https://github.com/naneau/php-obfuscator.

[40] P. Kissian, “YAK Pro: Php Obfuscator,” 2019, https://www.
php-obfuscator.com/.

[41] “Best PHP Obfuscator,” 2018. [Online]. Available: http://www.
pipsomania.com/best php obfuscator.do

[42] R. Lie, “Simple online PHP obfuscator: encodes PHP code into random
letters, numbers and/or characters,” 2019, https://www.mobilefish.com/
services/php obfuscator/php obfuscator.php.

[43] N. Systems, “GitHub - nbs-system/php-malware-finder: Detect po-
tentially malicious PHP files,” 2019, https://github.com/nbs-system/
php-malware-finder/.

[44] “Shellray: A PHP webshell detector,” 2019, https://shellray.com/.
[45] A. Naderi-Afooshteh, Y. Kwon, A. Nguyen-Tuong, A. Razmjoo-Qalaei,

M.-R. Zamiri-Gourabi, and J. W. Davidson, “Malmax: Multi-aspect

execution for automated dynamic web server malware analysis,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1849–1866.

[46] “GitHub - tdifg/WebShell: WebShell Collect,” 2016, https://github.com/
tdifg/WebShell.

[47] “GitHub - BDLeet/public-shell: Some Public Shell,” 2016, https://github.
com/BDLeet/public-shell.

[48] “GitHub - nixawk/fuzzdb: Web Fuzzing Discovery and Attack Pattern
Database,” 2018, https://github.com/nixawk/fuzzdb.

[49] “GitHub - BlackArch/webshells: Various webshells,” 2019, https://
github.com/BlackArch/webshells.

[50] “GitHub - tanjiti/webshellSample: Webshell sample for WebShell Log
Analysis,” 2018, https://github.com/tanjiti/webshellSample.

[51] “GitHub - xl7dev/WebShell: Webshell & Backdoor Collection,” 2017,
https://github.com/xl7dev/WebShell.

[52] J. Troon, “GitHub - JohnTroony/php-webshells: Common php web-
shells,” 2016, https://github.com/JohnTroony/php-webshells.

[53] “GitHub - bartblaze/PHP-backdoors: A collection of PHP backdoors,”
2019, https://github.com/bartblaze/PHP-backdoors.

[54] “GitHub - tennc/webshell: A webshell open source project,” 2019, https:
//github.com/tennc/webshell.

[55] “GitHub - Ridter/Pentest,” 2019, https://github.com/Ridter/Pentest.
[56] “VirusShare,” 2019, https://virusshare.com/.
[57] W. Foundation, “WordPress,” 2019, https://wordpress.com/.
[58] “Joomla: Content Management System (CMS),” 2019, https://www.

joomla.org/.
[59] M. M. Fauth, “GitHub - phpmyadmin/phpmyadmin: A web inter-

face for MySQL and MariaDB,” 2019, https://github.com/phpmyadmin/
phpmyadmin.

[60] L. Masters, “CakePHP: The Rapid Development Framework for PHP,”
2019, https://cakephp.org/.

[61] Derick Rethans, “Xdebug - Debugger and Profiler Tool for PHP,” 2020,
https://xdebug.org/.

[62] X. Lai, “On the design and security of block ciphers,” Ph.D. dissertation,
ETH Zurich, 1992.

[63] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The simon and speck lightweight block ciphers,” in
Proceedings of the 52nd Annual Design Automation Conference, 2015,
pp. 1–6.

[64] R. A. Rueppel, Analysis and design of stream ciphers. Springer Science
& Business Media, 2012.

[65] T. W. Cusick, C. Ding, and A. R. Renvall, Stream ciphers and number
theory. Elsevier, 2004.

6

https://github.com/quanyang/Taint-em-All
https://github.com/olivo/TaintPHP
https://github.com/naneau/php-obfuscator
https://www.php-obfuscator.com/
https://www.php-obfuscator.com/
http://www.pipsomania.com/best_php_obfuscator.do
http://www.pipsomania.com/best_php_obfuscator.do
https://www.mobilefish.com/services/php_obfuscator/php_obfuscator.php
https://www.mobilefish.com/services/php_obfuscator/php_obfuscator.php
https://github.com/nbs-system/php-malware-finder/
https://github.com/nbs-system/php-malware-finder/
https://shellray.com/
https://github.com/tdifg/WebShell
https://github.com/tdifg/WebShell
https://github.com/BDLeet/public-shell
https://github.com/BDLeet/public-shell
https://github.com/nixawk/fuzzdb
https://github.com/BlackArch/webshells
https://github.com/BlackArch/webshells
https://github.com/tanjiti/webshellSample
https://github.com/xl7dev/WebShell
https://github.com/JohnTroony/php-webshells
https://github.com/bartblaze/PHP-backdoors
https://github.com/tennc/webshell
https://github.com/tennc/webshell
https://github.com/Ridter/Pentest
https://virusshare.com/
https://wordpress.com/
https://www.joomla.org/
https://www.joomla.org/
https://github.com/phpmyadmin/phpmyadmin
https://github.com/phpmyadmin/phpmyadmin
https://cakephp.org/
https://xdebug.org/

	Introduction
	Background and Related Work
	Ambiguous Translation
	Ambiguity in Translation
	Complex State Machine
	Evasive State Machine

	Preliminary Evaluation
	Against Static and Dynamic Analysis
	Against Manual Analysis (via dynamic analysis)
	Against Symbolic Analysis

	Future Directions
	References

