
Understanding the Performance of WebAssembly Applications
Yutian Yan1, Tengfei Tu2, Lijian Zhao2, Yuchen Zhou2, Weihang Wang1

1University at Buffalo, SUNY 2Beijing University of Posts and Telecommunications
{yutianya, weihangw}@buffalo.edu {tutengfei.kevin, zhaolj, zhouyuchen7350}@bupt.edu.cn

ABSTRACT
WebAssembly is the newest language to arrive on the web. It

features a compact binary format, making it fast to be loaded and de-
coded. While WebAssembly is generally expected to be faster than
JavaScript, there have been mixed results in proving which code is
faster. Little research has been done to comprehendWebAssembly’s
performance benefit. In this paper, we conduct a systematic study
to understand the performance of WebAssembly applications and
compare it with JavaScript. Our measurements were performed on
three sets of subject programs with diverse settings. Among others,
our findings include: (1) WebAssembly compilers are commonly
built atop LLVM, where their optimizations are not tailored for
WebAssembly. We show that these optimizations often become in-
effective for WebAssembly, leading to counter-intuitive results. (2)
JIT optimization has a significant impact on JavaScript performance.
However, no substantial performance increase was observed for
WebAssembly with JIT. (3) The performance of WebAssembly and
JavaScript varies substantially depending on the execution envi-
ronment. (4) WebAssembly uses significantly more memory than
its JavaScript counterparts. We hope that our findings can help
WebAssembly tooling developers identify optimization opportuni-
ties. We also report the challenges encountered when compiling C
benchmarks to WebAssembly and discuss our solutions.

CCS CONCEPTS
•Networks→Networkmeasurement; • Information systems
→Web applications.

KEYWORDS
WebAssembly, web page performance, browser performance, just-
in-time compilation
ACM Reference Format:
Yutian Yan1, Tengfei Tu2, Lijian Zhao2, Yuchen Zhou2, Weihang Wang1.
2021. Understanding the Performance of WebAssembly Applications. In
ACM Internet Measurement Conference (IMC ’21), November 2–4, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3487552.3487827

1 INTRODUCTION
WebAssembly (abbreviated Wasm) is a low-level, portable, byte-

code format for the web that aims to speed up web applications [30].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’21, November 2–4, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9129-0/21/11. . . $15.00
https://doi.org/10.1145/3487552.3487827

Recently, leading companies, such as eBay, Google, and Norton, are
adoptingWebAssembly in various projects to improve performance
of their services that are typically written in JavaScript. To name a
few, barcode readers [74], pattern matching [47], and TensorFlow.js
machine learning applications [84] are the examples.

Before WebAssembly, JavaScript was the de facto standard client-
side web scripting language for over 20 years [17]. While being
prevalent and flexible to create powerful user interfaces, the per-
formance of JavaScript is often considered a major limitation in
practice. WebAssembly is designed to provide a better performance,
aiming to unleash the potential of web applications. It differs sig-
nificantly from JavaScript in two aspects. First, WebAssembly pro-
grams are delivered as compiled binaries that can be loaded and
decoded faster than JavaScript programs which have to be parsed
and compiled at runtime. Second, unlike JavaScript programs that
are manually written by developers, WebAssembly programs are
usually created by using compilers that compile existing programs
in high-level programming languages, such as C/C++ and Rust, to
the WebAssembly bytecode.

While WebAssembly is generally expected to be faster than
JavaScript, there have been mixed results in practice [7, 12, 88].
For example, developers at eBay used WebAssembly to implement
a barcode scanner, which boosted the performance of the JavaScript
implementation by 50 times [74]. On the other hand, Samsung en-
gineers observed that WebAssembly is slower than JavaScript on
the Samsung Internet browser (v7.2.10.12) when performing multi-
plications on matrices of certain sizes [9].

The performance of WebAssembly programs is compiler- and
environment-dependent. First, compilers that are used to generate
WebAssembly programs can affect the performance, especially the
compilers’ optimization algorithms. For example, a WebAssembly
program generated by a Rust compiler with the faster speed opti-
mization option can run 20% faster than the same program compiled
with the smaller code size optimization [73]. Second, the runtime
environment, which includes web browsers and desktop/mobile
platforms, also plays an important role. Benchmark results of a
game emulator on different browsers showed that the performance
advantage of WebAssembly over JavaScript is significant on Firefox
(WebAssembly is 11.71x faster than JavaScript) but marginal on
Chrome (1.67x faster) [87].

This paper conducts a systematic study to understand the per-
formance of WebAssembly applications. We investigate the various
factors that impact WebAssembly performance and compare it
with JavaScript. We perform measurements on three sets of sub-
ject programs: (1) 41 WebAssembly binaries and 41 JavaScript pro-
grams compiled from 41 widely-used C benchmarks, (2) 9 compiler-
generatedWebAssembly binaries and 9manually-written JavaScript
programs, and (3) 3 real-world applications having implementa-
tions in both WebAssembly and JavaScript. These programs were

https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

tested with diverse compiler optimizations and program inputs in
various execution environments. Our findings include:

1. WebAssembly compilers are commonly built on top of existing
compilers (e.g., LLVM) where their optimization techniques
were not designed for WebAssembly. Our study shows that the
optimizations are often ineffective for WebAssembly, leading
to counter-intuitive results.

2. JIT optimization has a significant impact on JavaScript per-
formance. However, we observed that there was no substan-
tial performance increase for WebAssembly with JIT on both
Chrome and Firefox.

3. We observe that the runtime performance of WebAssembly on
Chrome, Firefox, and Edge browsers varies between desktop or
mobile platforms. Specifically, Firefox has better performance
(spends 0.61x time to run) in executing WebAssembly than
Chrome on desktop computers while Edge performs worse
(spends 1.28x time). Firefox takes 1.48x time to run compared to
Chrome on mobile devices, but mobile Edge outperforms (takes
0.83x time) mobile Chrome. JavaScript also has significantly
different performances on different platforms. Compared to
Chrome, Firefox needs 1.06x time to execute on desktop but
only needs 0.67x time to run on mobile. Edge spends 1.40x time
to execute on desktop but needs 0.81x time to run on mobile
compared to Chrome.

4. WebAssembly uses significantly more memory than JavaScript
on Chrome, Firefox, and Edge. This is because JavaScript uses
garbage collection that dynamically monitors memory alloca-
tions to determine when to reclaim memory that is no longer
in use, while WebAssembly employs a linear memory model
which does not reclaim memory automatically.

Our findings provide a deeper understanding of the contributing
factors of the performance difference between WebAssembly and
JavaScript. We hope that our analysis results can help WebAssem-
bly tooling developers, including compiler developers and virtual
machine developers, in identifying opportunities for improving
runtime speed and reducing memory usage.

In summary, this paper makes the following contributions:

• We conduct a systematic performance comparison of We-
bAssembly and JavaScript in diverse settings.

• Weanalyze the contributing factors that influenceWebAssem-
bly and JavaScript performance in practice.

• We report the challenges we encountered during the compi-
lation and discuss our solution.

• Our experiments show counter-intuitive results. We believe
that our findings can help developers better understand
when WebAssembly outperforms JavaScript and uncover
opportunities in adopting WebAssembly.

• We make our data publicly available [2].

2 BACKGROUND
In this section, we present technical backgrounds relevant to our

experiments. In particular, we focus on various factors affecting the
performance of WebAssembly applications.

2.1 WebAssembly Compilers
Typically, WebAssembly programs are generated from source

code written in high-level languages (e.g., C/C++ and Rust) using a
WebAssembly compiler, such as Cheerp [86] or Emscripten [15]. As
a result, the WebAssembly compiler and compilation options have
a significant impact on the performance of generated WebAssembly
programs.

2.1.1 C-to-WebAssembly Compilers. A core use case forWebAssem-
bly is to port the existing ecosystem of C programs and allow them
to be used on the web [29, 40]. Thus, in this paper, we focus on
compiling C source programs to WebAssembly.

There are two C-to-WebAssembly compilers, Emscripten and
Cheerp. Both of them can generate WebAssembly programs by us-
ing LLVM’s backend stage [15, 86], and they offer varying levels of
support for C libraries. However, their support for compiling C to
JavaScript is very different: Cheerp supports standard JavaScript as a
target; Emscripten does not produce standard Java-Script, but gener-
ates asm.js [5], an optimizable, low-level subset of JavaScript which
was designed to allow C programs to be run as web applications
with performance considerably better than standard JavaScript. As
a precursor technology to WebAssembly, asm.js is also supposed to
be created using compilers instead of manually written.

One important goal of this paper is to help developers solve
the dilemma of choosing between JavaScript and WebAssembly
for developing or porting a web application. For this purpose, we
use Cheerp to compare the performance between WebAssembly
and JavaScript (by creating WebAssembly and standard JavaScript
from the same set of C benchmark programs). Additionally, to
measure compilers’ impact, we use both Emscripten and Cheerp to
create WebAssembly (from the same C programs) and compare the
performance differences (see Section 4.2.2).

2.1.2 Compiler Optimization Levels. C-to-WebAssembly compilers
allow developers to specify optimization levels from command line
options to determine how aggressive the target programs should
be optimized.

Runtime Performance

C
o

d
e

Si
ze

-Ofast

-O2

-O1

Slow Fast

La
rg

e
Sm

al
l

-O3/
-O4

-Oz

-Os

Legend

-Ox Baseline (Moderate)

-Ox Conservative

-Ox Aggressive

-Ox Not included

Figure 1: Compiler optimization options.

Fig. 1 illustrates the optimization levels supported by Emscripten
and Cheerp with respect to the runtime performance (x-axis) and
the code size (y-axis) of the compiled code. We describe the details
of each optimization level below.

• -O1: applies basic optimizations. An example of optimiza-
tions applied at this level includes the pass (pass is the basic
unit of LLVM-based compiler’s optimization) -globalopt,
which removes global variables that are never read.

• -O2: is an optimization level that balances the running time,
code size and compilation time of produced code. We use

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

-O2 as the baseline for most experiments (Sec. 4.3, Sec. 4.4,
Sec. 4.5, and Sec. 4.6) in this study. An example pass applied
at this level is -vectorize-loops, which reduces the loop
frequency but increases the code size. This pass may reduce
execution time as the loop structures are run less frequently.

• -O3/-O4: contains all optimizations in -O2, and enables op-
timizations that need more time to compile, or increase code
size to reduce code running time. For Emscripten, -O4 is a
unique level and contains more optimization passes than
-O3. For Cheerp, -O3 and -O4 are identical. An example pass
applied in -O3 is -argpromotion. The compiler will pass
the value of an internal function argument into the function
instead of the address of the value if the compiler can prove
that this argument is only read but not written [10].

• -Ofast: aims for generating the fastest code. Besides opti-
mizations in -O2, more aggressive optimizations such as inac-
curate math calculations are used to further reduce execution
time [85]. An example pass applied is -fno-signed-zeros.
In math calculations, singed zero is required according to
IEEE 754 standard [1]. However, this pass will ignore the
sign bit of zeros to accelerate calculation.

• -Os: is built on top of -O2, with further optimizations for
decreasing code size and the removal of optimizations that
increase code size. An example pass used in -O2 but removed
in -Os is -libcalls-shrinkwrap. To avoid unnecessary
calls, this pass wraps library calls whose results are not used
with additional conditions. Because additional conditions
increase code size, the pass is eliminated in -Os.

• -Oz: to reduce code size even more, -Oz adds more aggres-
sive optimizations and eliminates certain optimizations from
-Os. -vectorize-loops is an example pass that is no longer
used at this level. This pass was discussed in -O2, and it will
increase code size.

2.2 Execution Environment
Inside browsers, both WebAssembly and JavaScript run in the

same engine – the JavaScript engine. However, the two languages
are significantly different regarding their execution models and
memory management mechanisms.

2.2.1 JavaScript. JavaScript source code is parsed, optimized, and
compiled at runtime by JavaScript engines in browsers. Memory
allocation in JavaScript is managed dynamically by the JavaScript
engine’s garbage collector.
JavaScript Engine. JavaScript source code first needs to be parsed
to an abstract syntax tree which then will be used by the JavaScript
engine for generating the bytecode. To speed up JavaScript program
execution, the Just-in-time (JIT) compilation [38] can be applied on
the sequences of frequently executed bytecode, translating them to
machine code for direct execution on the hardware.
JavaScript Garbage Collection. JavaScript engine uses garbage
collection to automatically monitor memory allocation and deter-
mine when a block of allocated memory is no longer in use and
reclaim it. This form of automatic memory management makes
JavaScript memory-efficient. As we observed in the experiments
(see Section 4.3), unlike WebAssembly that allocates a large chunk

of memory in the beginning, the memory occupied by JavaScript
programs stays stable even when they process very large input.

2.2.2 WebAssembly. Unlike JavaScript programs, WebAssembly
bytecode does not need to be parsed. WebAssembly also employs
a linear memory model, which is very different from the garbage
collection in JavaScript.
WebAssembly Virtual Machine. The low-level WebAssembly
bytecode does not need to be parsed as it is ready to be compiled into
machine code. Moreover, WebAssembly has already gone through
the majority of optimizations during compilation (except a few
machine-dependent optimizations). However, the context switch
between JavaScript and WebAssembly causes additional runtime
overhead. WebAssembly requires JavaScript to access Web APIs
(e.g., DOM andWebSockets). At the minimum, it requires JavaScript
to instantiate the WebAssembly module.
WebAssembly Linear Memory Model.WebAssembly employs
a linear memory model where linear memory is represented as
a contiguous buffer of untyped bytes that can be read and mod-
ified by both WebAssembly and JavaScript [67]. A memory in-
stance is a resizable JavaScript ArrayBuffer. When a WebAssem-
bly module is instantiated, a memory instance is created (e.g., using
WebAssembly.Memory() [58]) to allocate a chunk of linear mem-
ory for the module to use and emulate dynamic memory allocations.
If the initial memory is fully occupied, the memory instance will be
expanded to a bigger size. We observed that compared to JavaScript,
WebAssembly consumes significantly more memory when process-
ing large input.

2.2.3 Mobile vs. Desktop. The performance of WebAssembly and
JavaScript may differ between browsers and platforms. For example,
our experiments show that Chrome is the fastest on desktop for
JavaScript, and Firefox is the fastest on desktop for WebAssembly.
On mobile devices, however, Firefox is the fastest in executing
JavaScript, and Edge outperforms others in running WebAssembly.
In Sec. 4.5, we will discuss the performance implications of browsers
and platforms.

2.3 Program Input Size
The value of a program’s input that affects the amount of calcu-

lations is referred to as its input size. For example, the input size of
the multiplication of two matrices is a tuple (M, N, K), where the
dimensions of the first matrix are M×N, and the dimensions of the
second matrix are N×K. Typically, programs taking a larger input
would run for a longer time, executing a set of instructions repeat-
edly. Intuitively, such programs have higher chances to be better
benefited from optimization techniques. For example, processors
(e.g., x86 CPU) leverage code cache to optimize frequently executed
instructions. JavaScript engines apply the JIT compilation on the
JS statements that are frequently executed. These optimizations
work well for JavaScript programs, especially those with hot loops.
However, it is unknown whether WebAssembly programs are effi-
ciently optimized. As WebAssembly is actively under development,
its runtime performance is highly dependent on how browser en-
gines optimize WebAssembly virtual machine. We will discuss the
performance impact of input sizes in Sec. 4.3.

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

Benchmarks
(C Source code)

Source Code
Transformation Compilation

Deployment
Instrumentation

Replacing
Incompatible

Functions

WASM with Loader

Test
Results

Compiled
WASM

Transformed
C Programs

Compiled
JS

Instrumenting
Loader and

Testing Script
JS with Loader

Data Collection

Measuring in
Chrome and

Firefox

Input
Embedding

Figure 2: Process overview.

3 METHODOLOGY
Overview. Fig. 2 summarizes the procedure of measuring the
performance of WebAssembly and JavaScript. It has four steps:
(1) Source Code Transformation, (2) Compilation to Wasm/JS, (3)
Deployment Instrumentation, and (4) Data Collection.

First, since there are 30 programs in our benchmarks having
compilation errors, we resolve the errors by applying source code
transformation so that these benchmarks can be compiled to We-
bAssembly and JavaScript successfully. The source code transfor-
mation essentially replaces incompatible C constructs that are not
supported by Cheerp with comparable implementations. Second,
we compile 41 C benchmarks using Cheerp to generate WebAssem-
bly and JavaScript programs. Third, we instrument the generated
programs to add time measurement code and create a minimal
HTML page to load the WebAssembly/JavaScript programs. Finally,
we run the generated WebAssembly/JavaScript program in HTML
pages and collect execution time andmemory usage using browsers’
built-in developer tools.

3.1 Source Code Transformation
The testing process begins with transforming the source code to

replace incompatible primitives, such as functions and data struc-
tures, with comparable compatible implementations.

try {
...
if(matrix[i][j][k] <= 0)

throw std::runtime_error(
"Matrix elements must
larger than zero");

isFinished = 1;
} catch (...) {

std::cout << e.what() <<
" Input the data again" <<
std::endl;

isFinished = 0;
}

1
2
3
4

5
6
7

8
9

(b) Union Data Type: union → struct and type casting

20

21
22

23
24

25
26

10
11
12
13
14
15
16
17

18
19

(a) Exception Handler

union { double d;
unsigned long long ll; }

t;
t.d = ...;
t.ll = ...;

int error = 0;
...
if(matrix[i][j][k] <= 0)

error = 1;
isFinished = 1;
...
if(error) {

std::cout << "Matrix elements
must larger than zero. Input
the data again" << std::endl;
isFinished = 0;

}

struct { double d; } t;
typedef struct {

unsigned long long ll; } _T2;
t.d = ...;
((_T2*)(&t))->ll = ...;

Figure 3: Code transformation examples.

Resolving Incompatible Primitives. One major technical chal-
lenge we encountered was that Cheerp compiler does not support
all C/C++ features generally supported by mainstream C/C++ com-
pilers such as GCC [36]. In particular, we discuss the following
representative challenges that prevent us from compiling the C
benchmarks to WebAssembly and JavaScript.

• Exceptions. Cheerp does not support exceptions correctly.
Specifically, Cheerp blindly removes all the catch blocks
in the try-catch statements. However, it does not remove

the corresponding throw statements, leading to dangling
exceptions at runtime. If an exception is thrown at runtime,
the execution will crash (i.e., causing a segmentation fault).
To resolve this incompatibility, we transform the source code
to avoid using exceptions. As shown in Fig. 3(a), we remove
the try-catch statement and replace a throw statement
with a variable (error at line 10) that stores whether the
exception occurs or not. Then, statements in the catch block
are copied to the error predicate (lines 17-18).

• Union. Cheerp does not support the union data type. In
C, union can be replaced with multiple struct definitions
with proper casting operations on its uses. Fig. 3(b) shows the
related transformation. Specifically, in addition to a structure
t that includes double d at line 23, we define an additional
structure (_T2) that contains ll (line 24).When ll is referred
at line 26, we cast the original structure to _T2 to implement
the union functionality.

#include <stdio.h>
int fib(int i) {

if (i < 3)
return 1;

else
return fib(i - 1) + fib (i - 2);

}
int main() {

printf("%d", fib(6));
}

1
2
3
4
5
6
7
8
9
10

function fib(i) {
if (i < 3) {

return 1;
} else {

return (fib(i - 1)) +
(fib(i - 2));

}
}
function foo() {

return fib(6);
}
let t1 = foo();
console.log(t1);

11
12
13
14
15
16
17
18
19
20
21
22
23

(a) C Source Code

(b) Cheerp Compiled JavaScript Program

24
25
26
27
28
29
30
31
32
33
34
35
36

(c) Cheerp Compiled WebAssembly Program

(module
(type $t0 (func))
(type $t1 (func (param i32) (result i32)))
(type $t2 (func (result i32)))
(func $f0 (type $t0)

unreachable)
(func $f1 (type $t1) (param $p0 i32)
(result i32)
(local $l1 i32) (local $l2 i32)
local.get $p0
i32.const -1
i32.add
...

C to JS Compilation C to Wasm Compilation

Figure 4: Cheerp compiled JavaScript and Wasm programs.

3.2 Compilation to Wasm/JS
We use Cheerp to generate WebAssembly and JavaScript pro-

grams from the C source files of each program under test. Fig. 4
shows an example of Cheerp compiling a Fibonacci programwritten
in C (Fig. 4(a)) to JavaScript (Fig. 4(b)) and WebAssembly (Fig. 4(c)).
During the compilation, several parameters are used:

• Input Size. We use 41 C benchmark programs (see Sec-
tion 4.1) in our experiment. For each benchmark, we com-
piled five sets of input with different sizes: Extra Small (XS),
Small (S), Medium (M), Large (L), and Extra Large (XL)”, de-
fined by the benchmark frameworks (PolyBenchC [75] and

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

CHStone [44]). The input sizes for all benchmarks can be
found on [2]. When compiling the benchmarks to Wasm/JS,
macros are used to specify the input size.

• Optimization Level.We apply 4 optimization levels O1, O2,
Oz, and Ofast during the compilation. We choose the -O2 as
the baseline as it achieves a balance between code running
time, code size and compile time.We do not include -Os, -O3,
and -O4, because their impact on performance and memory
consumption is similar to the other options and thus are
unrepresentative. Specifically, -Os is a subset of -Oz with
a resulting code size in between -Oz and -O2. -O3 and -O4
are similar to -Ofast with respect to execution time.

• Stack/Heap Limit. Cheerp-compiled WebAssembly pro-
grams have a maximum 8 MB heap and 1 MB stack space by
default. If a program uses heap/stack space more than the
limit, it will throw runtime errors. To overcome this limit,
we increase the heap size and stack size using flags cheerp-
linear-heap-size and cheerp-linear-stack-size.

During the linking process of compiling the C benchmarks to
WebAssembly/JavaScript, we encounter another major technical
challenge that is closely related to the Cheerp compiler implemen-
tation. Specifically, we need to inspect all compiled results of the
benchmarks to make sure the source code is properly compiled due
to the following Cheerp-specific implementations.
Cheerp Pre-compiled Libraries. By default, Cheerp implicitly
links pre-compiled common C/C++ libraries such as stdlib.h and
libc++. When a target program is compiled and explicitly linked
to the same library, there will be conflicting symbol definitions (i.e.,
one from the pre-compiled libraries implicitly linked and another
one from the explicitly linked libraries). To avoid the issue, we
configure Cheerp not to use pre-compiled libraries.
Missing Libraries Native to LLVM. While Cheerp is an LLVM-
based tool, it does not support a few libraries that are supported
in LLVM versions for typical target architectures (e.g., x86). For
example, the stdio.h library that defines file input/output func-
tions is not supported by Cheerp. Similarly, stdlib.h is also not
supported. We have tried to compile the libc, but unfortunately,
we were not successful. We find that multiple functions were not
properly compiled, leading to empty functions, which can cause
unexpected runtime behaviors for programs that use the library.
To handle this issue, we look for alternative implementations of the
functions in those missing libraries and use them if possible [14].

3.3 Deployment Instrumentation
3.3.1 Creating Web Page to Load Wasm/JS. We construct an HTML
page to test the WebAssembly and JavaScript programs in browsers.
To reduce the overhead imposed by other elements on the page, the
HTML page is minimal and includes just the generated JavaScript
program or the JavaScript loader (that generated for instantiating
WebAssembly) using a ‘<script>’ tag.
3.3.2 Instrumenting to Add Timers. To measure execution time,
we use a JavaScript high-resolution timer performance.now().
The timer is added to the generated JavaScript program and the
JavaScript loader. Specifically, we insert the timer calls before the
target program starts, and after the program ends. Each benchmark
was executed five times to get the average.

3.4 Data Collection
We test the performance of WebAssembly and JavaScript on

three mainstream browsers (Chrome, Firefox, and Edge). For each
experiment, we use browsers’ developer tools (i.e., DevTools) to
collect two metrics: (1) Execution Time and (2) Memory Usage. Note
that the measured performance includes overhead caused by other
components of web browsers such as page renderer. To reduce the
overhead imposed by other tasks, we run only one browser tab that
executes a single benchmark at a time.

4 EVALUATION
In this section, we first describe the three kinds of subject pro-

grams used in the study. Next, we measure the performance of We-
bAssembly and JavaScript: (1) compiled with various optimization
levels, (2) with diverse inputs, and (3) when executed in different
browsers and platforms. We evaluated the desktop performance
and mobile performance of three mainstream browsers, Google
Chrome (v79) [37], Mozilla Firefox (v71) [66], and Microsoft Edge
(v79) [61]. The desktop experiments were done on a machine with
Intel Core i7 processor and 16 GB memory, running Ubuntu 18.04.2.
For experiments on mobile phones, we used a Xiaomi Mi 6 phone
with an 8-core processor and 6 GB memory, running Android OS.
We collected the execution time and memory usage on mobile
browsers using Android Debug Bridge (adb) [4]. The parameters
we used with Google Chrome in each subsection of the evaluation
are described in Appendix A.

4.1 Subject Programs
Our study includes three kinds of subject programs: (1) 41 We-

bAssembly binaries and 41 JavaScript programs compiled from 41
widely-used C benchmarks, (2) 9 compiler-generated WebAssembly
binaries and 9 manually-written JavaScript programs, and (3) 3 real-
world applications having implementations in both WebAssembly
and JavaScript.

Note that for the first two sets of subject programs, we develop
WebAssembly by converting implementations from C rather than
basing it on JavaScript. This is because C/C++ to WASM compi-
lation is the more desirable way for WASM development, even if
some JS to WASM compilation is possible. Currently there is no
compiler that directly compiles generic JS to WASM, as several
essential features in JavaScript, such as garbage collection, are not
supported in WebAssembly. A subset of TypeScript to WASM com-
piler exists, but the project is not for generic JavaScript and has
been inactive for several years [90]. By contrast, the support of
compiling C/C++ features to WASM is relatively mature, as several
components of WASM compilers are built atop the components of
compilers targeting C/C++. Besides, it is worth mentioning that the
original intention of WASM development is not to replace JS but as
a way to complement it.

4.1.1 Compiler-Generated WebAssembly and JavaScript. First, we
compile 41 C benchmark programs to WebAssembly and JavaScript,
and measure the contributing factors of their performances (Sec. 4.2,
4.3, 4.4, and 4.5). As shown in Table 1, these 41 C programs are se-
lected from two widely-used C benchmark suites: PolyBenchC (ver-
sion 4.2.1) [75] and CHStone (version 1.11) [44]. The two benchmark

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

Table 1: Benchmark statistics.
Benchmark cLOC1 LOC Description

Po
ly
Be

nc
hC

covariance 175 958 Convariance computation
correlation 201 984 Normalized covariance computation
gemm 194 978 Generalized matrix multiplication
gemver 215 997 Multiple matrix-vector multiplication
gesummv 181 963 Summed matrix-vector multiplication
symm 194 977 Symmetric matrix multiplication
syrk 172 955 Symmetric rank k update
syr2k 187 970 Symmetric rank 2k update
trmm 171 954 Triangular matrix multiplication
2mm 214 999 Two matrix multiplications
3mm 229 1,015 Three matrix multiplications
atax 170 953 A𝑇 times Ax
bicg 186 969 Biconjugate gradient stabilization
doitgen 176 960 Numerical scientific simulation
mvt 180 962 Matrix vector multiplication
cholesky 170 952 Matrix decomposition
durbin 163 945 Yule-Walker equations solver
gramschmidt 185 974 QR Matrix decomposition
lu 170 952 LU Matrix decomposition
ludcmp 212 994 Linear equations solver
trisolv 154 936 Triangular matrix solver
deriche 227 1,010 Edge detection and smoothing Filter
floyd-warshall 146 928 Shortest paths in graph solver
nussinov 495 1,277 RNA folding prediction
adi 205 988 2D heat diffusion simulation
fdtd-2d 214 998 Electric and magnetic fields simulation
heat-3d 171 954 Heat Equation w/ 3D space simulation
jacobi-1d 157 940 Jacobi-style stencil computation (1D)
jacobi-2d 160 943 Jacobi-style stencil computation (2D)
seidel-2d 150 933 Gauss-Seidel stencil computation (2D)

CH
St
on

e

ADPCM 733 843 Speech signal processing algorithm
AES 1,120 1,187 Cryptographic algorithm
BLOWFISH 1,804 1,896 Data encryption standard
DFADD 809 5,014 Addition for double
DFDIV 644 2,689 Division for double
DFMUL 622 2,487 Multiplication for double
DFSIN 975 3,192 Sine function for double
GSM 549 654 Speech signal processing algorithm
MIPS 390 423 Simplified MIPS processor
MOTION 1,007 1,040 Motion vector decoding for MPEG-2
SHA 1,367 33,933 Secure hash algorithm

1: Excluding modification from researchers and generic benchmark harness.

suites include compute-intensive applications which represent com-
mon usage scenarios according to WebAssembly design goals [16].
In particular, PolyBenchC and CHStone include benchmarks that
are relevant to applications such as scientific visualization, encryp-
tion, simulation, image/video/music editing/recognition, games,
and virtual/augmented reality. For example, Tensorflow [31], one
of the most popular AI/ML libraries, uses WebAssembly to achieve
a ten times improvement in the performance of their models over
the JS version. The benchmark software’s matrix computations
and other mathematical algorithms are directly relevant to this
type of use case. Similarly, graphic editing tools and online games,
such as Figma [35], a cloud-based graphic design tool for drawing,
leverages WebAssembly to improve its load time by three times.

We list detailed attributions of individual benchmarks to the use
cases as follows. (1) PolyBenchC: (1a) Scientific visualization and
simulation: “floyd-warshall”, “nussinov”, “adi”, “fdtd-2d”, “heat-3d”,
“jacobi-1d”, “jacobi-2d”, and “seidel-2d”. (1b) Image/video editing:
“deriche”. (1c) Image/video/signal processing applications: com-
monly use matrix computation benchmarks, including “gemm”,
“gemver”, “gesummv”, “symm”, “syrk”, “syr2k”, “trmm”, “2mm”,
“3mm”, “atax”, “bicg”, “doitgen”, “mvt”, “cholesky”, “lu”, and “trisolv”.
(1d) Math-oriented applications and equation solvers: “correlation”,

“covariance”, “durbin”, “gramschmidt”, and “ludcmp”. (2) CHStone:
(2a) Encryption: “AES”, “BLOWFISH”, and “SHA”. (2b) Image/video
editing: “MOTION”. (2c) Scientific visualization and simulation:
“ADPCM” and “GSM”. (2d) Platform simulation/emulation: “MIPS”.
(2e) Signal processing that use intensive floating-point computa-
tions: “DFADD”, “DFDIV”, “DFMUL”, and “DFSIN”.

4.1.2 Compiler-GeneratedWebAssembly andManually-Written Java-
Script. The second experiment setting is to compare WebAssembly
with native JavaScript (rather than JavaScript generated from C).
To do so, we manually implement 9 benchmarks chosen from Poly-
BenchC and CHStone, each representing one category of compu-
tations (data mining, BLAS routines, linear algebra kernels, linear
algebra solvers, algorithms in a graph, scientific simulation, two
different cryptographic algorithms, and hashing)1. Note that one
benchmark can be written in JavaScript in many different ways. To
make these implementations better represent real-world JavaScript,
we leverage popular JavaScript libraries, including math.js [50]
(11.1k stars on GitHub) and jsSHA [8] (2k stars on GitHub), and use
standard W3C APIs, such as Web Cryptography API [89] to per-
form SHA hashing, whenever possible. The list of manually-written
JavaScript programs and their LOC are shown in Table 9.

4.1.3 Real-World Applications in WebAssembly and JavaScript. Fi-
nally, we look for real-world applications that are available in both
WebAssembly and JavaScript from GitHub repositories. Specifically,
we search for GitHub repositories with the topics ‘WebAssembly’
and ‘wasm’, rank these repositories by the number of stars, and
then manually inspect these popular projects. Note that finding We-
bAssembly and JavaScript implementations of the same program on
GitHub is nontrivial, and there aren’t many of them available. After
inspecting over 150 GitHub repositories, we find three widely-used
libraries that have both WebAssembly and JavaScript implementa-
tions: Long.js, Hyphenopoly.js, and FFmpeg. We briefly describe each
library below. The details of the libraries, including LOC, project
size, and the input we used for the test, are given in Table 10.
Long.js defines a Long class to represent a 64 bit two’s-complement
integer value. According to ECMAScript, the JavaScript Number
type cannot represent integers whose magnitude is greater than 253
safely [59]. This library is commonly used for supporting full 64-bit
integer values and reliable 64-bit integer arithmetic operations. Both
WebAssembly implementation and JavaScript implementation [24,
25] of Long.js are available in the same repository [22].
Hyphenopoly.js hyphenates text if the user agent does not sup-
port CSS-hyphenation or has no support for a required language.
For example, if the input is ‘Hyphenation’ in American English, the
output should be ‘Hy-phen-ation.’ The WebAssembly implementa-
tion [65] (with 481 GitHub stars) and the JavaScript implementa-
tion [63] (with 593 GitHub stars) are from two different reposito-
ries [62, 64] but created by the same author.
FFmpeg provides functions and utilities to record, convert, and
stream audio and video [32]. Compared to the other two projects,
this project is much larger with over 9 million LOC and 23 MB.
For this application, the WebAssembly implementation [34] (with
4.1k GitHub stars) and the JavaScript implementation [21] (with

1To the best of our knowledge, there is no official JavaScript implementation of Poly-
BenchC and CHStone.

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

Table 2: Geometric means of compiler optimization results
(number less than 1 means it is faster/smaller than O2).

Metrics Targets JS WASM x86

Exec. Time
O1/O2 0.95x 0.88x 1.36x

Ofast/O2 0.99x∗ 0.96x∗ 0.97x
Oz/O2 0.94x# 0.86x# 1.22x

Code Size
O1/O2 0.99x 1.00x 1.00x

Ofast/O2 1.00x 1.00x 1.11x
Oz/O2 0.99x 0.99x 0.99x

Memory
O1/O2 1.00x 1.00x -

Ofast/O2 1.00x 1.00x -
Oz/O2 1.01x 1.00x -

∗ : Ofast is unexpectedly slower than O1 and Oz.
: Oz unexpectedly produces the fastest code.

433 GitHub stars) are from two different repositories ([33] and [20])
and are created by different developers.

4.2 Impact of Compilers and Compiler
Optimizations

4.2.1 Compiler Optimizations. We first measure the impact of com-
piler optimizations on WebAssembly performance. As discussed in
Section 2.1.2 (see Fig. 1), -Ofast is supposed to generate the fastest
code; -Oz should generate the most compact code; -O1 is supposed
to produce large code that runs slowly; -O2 should be faster than
-O1 and -Oz but slower than -Ofast in terms of execution time,
and generate code which is smaller than -O1 and -Ofast but larger
than -Oz.
Optimization for WebAssembly and JavaScript. Fig. 5 shows
the performance results of WebAssembly and JavaScript with four
optimization levels, -O1, -O2, -Ofast, and -Oz. Table 2 summarizes
the statistics of execution time, resulting code size, and runtime
memory usage. Further statistical analysis on compiler optimization
results are described in Appendix B.

Regarding execution time, we observe several counter-intuitive
results. Specifically, -Ofast, which is supposed to produce fastest
code, generated WebAssembly and JavaScript that execute slower
(annotated by ∗ in Table 2) than -O1 and -Oz. -Oz unexpectedly
produced the fastest WebAssembly (0.86x# compared to baseline
optimization -O2) and the fastest JavaScript (0.94x#). Besides, the
WebAssembly and JavaScript compiled with -O2 run slowest, al-
though -O2 is supposed to generate faster target code than -O1 and
-Oz. Next, we use two benchmarks as examples to explain what
causes the counter-intuitive results.

(1) ADPCM benchmark: The ‘ADPCM’ benchmark in WebAssem-
bly compiled with -Ofast spends 1.50x time to run compared to
that compiled with -O2. Fig. 7(a) shows the code snippet of the ‘AD-
PCM’ benchmark in C. Fig. 7(b) and (c) show theWebAssembly code
compiled from the C code shown in Fig. 7(a) with -O2 and -Ofast,
respectively. Fig. 7(a) highlighted the statements at lines 4-5 which
caused the counter-intuitive result. In particular, the global variable
‘result’ was never used, and therefore it should be eliminated in the
compiled code. As shown in Fig. 7(b), there is no code generated
for the C code at lines 4-5 with -O2. However, in Fig. 7(c), -Ofast
added 14 extra instructions (lines 14-27). These extra instructions
were executed 50 times during the experiment, leading to longer
execution time. It means that Ofast misses dead code elimination.

This is counter-intuitive because Ofast is supposed to include all
of O3, which includes all of O2. From our further inspection, we
believe that this might be a bug in the compiler. Specifically, we
found a reported bug that is similar where O3 (and Ofast) perform
worse than O2 [27].

(2) Covariance benchmark: The ‘Covariance’ benchmark in We-
bAssembly compiled with -O1 takes 0.71x time compared to -O2.
Fig. 8(a) and (b) show theWebAssembly code compiledwith -O2 and
-O1 respectively. As shown in Fig. 8(a), in -O2, a 64-bit float number
is defined by first defining a 32-bit integer (i32.const) and then
performing an i32-to-f64 type conversion (f64.convert_i32_s).
In -O1, however, the same number was passed in as a function ar-
gument $p0 (Fig. 8(b), line 9 and line 13). Because of the extra push
and pop operations performed on WebAssembly’s virtual stack, the
two instructions (lines 5-6) in Fig. 8(a) are executed slower than
the one instruction (line 13) in Fig. 8(b). We validated this intuition
using a simple experiment that loops the two code snippets (lines
5-6 in Fig. 8(a) and line 13 in Fig. 8(b)) for 1 million times. The result
shows that the one instruction in -O1 takes 0.77x of the time to run
than the two instructions in -O2.

From our experiments, we observe that there is no silver bullet
optimization flag for all target programs. For example, while Oz
produced the fastest WASM binaries on average (15 out of 41 are the
fastest), there are cases where other options (i.e., -O1/-O2/-Ofast)
produced the fastest WASM binaries. Specifically, -O1 generated
the fastest binaries for “gesummv”, “symm”, “atax”, “cholesky”, “tri-
solv”, “deriche”, “jacobi-2d”, and “SHA” (8 out of 41). -O2 compiled
“correlation”, “gemm”, “3mm”, “dotigen”, “gramschmidt”, “ADPCM”,
“GSM”, and “MIPS” are the fastest (8 out of 41). -Ofast produced
the fastest binaries for “covariance”, “syrk”, “bicg”, “durbin”, “lud-
cmp”, “floyd-warshall”, “nussinov”, “adi”, “jacobi-1d”, “seidel-2d”,
and “DFADD” (10 out of 41). Hence, our suggestion for applica-
tion developers (who use WASM compilers) is that while -Oz may
generally produce fast binaries, one should do a sufficient test and
choose an optimization flag based on the result. This is because
those optimizations typically target x86 binaries and seem to be
not designed and implemented for WASM in mind. As a result, our
takeaway for compiler developers is that there is a real demand to
tailor the optimization techniques to WebAssembly.

In terms of resulting code size, compared to the baseline op-
timization -O2, programs produced with -O1, -Ofast, and -Oz
optimizations have almost identical sizes (with less than 2% vari-
ance) for both WebAssembly and JavaScript. A few exceptions stem
from the code sizes of two CHStone benchmarks, ‘DFADD’ and
‘DFSIN’. These two benchmarks store the input data in global vari-
ables. Thus, a larger input size requires a larger data array, leading
to a larger code size.

The memory usage of WebAssembly and JavaScript is mostly
the same at all optimization levels. Note that we used medium-
sized input for the tests, which did not trigger dynamic memory
allocations extensively. The memory usage may differ if dynamic
memory allocations occur more frequently.
Optimization for x86. To prove that the counter-intuitive results
of WebAssembly and JavaScript are not compiler intended behav-
iors, we conduct the same experiments on x86. Specifically, we
compile the 41 C benchmarks to x86 machine code using LLVM

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

0.0

1.0

2.0

Ra
tio

Relative Execution Time O1/O2

JS
WASM

0.0

0.5

1.0
Relative Code Size O1/O2

JS
WASM

0.0

1.0

Ra
tio

Relative Execution Time Ofast/O2

JS
WASM

0.0

0.5

1.0
Relative Code Size Ofast/O2

JS
WASM

Co
va

ria
nc

e
Co

rre
lat

ion
Ge

mm
Ge

mve
r

Ge
su

mmv
Sy

mm
Sy

rk
Sy

r2
k

Tr
mm

2m
m

3m
m

At
axBic
g

Do
itg

enMv
t

Ch
ole

sk
y

Du
rb

in
Gr

am
sc

hm
idt Lu

Lu
dc

mp
Tr

iso
lv

De
ric

he

Flo
yd

-w
ar

sh
all

Nu
ss

ino
v

Ad
i

Fd
td

-2
d

He
at

-3
d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

AD
PC

M
AE

S
BL

OW
FIS

H
DF

AD
D

DF
DI

V
DF

MU
L

DF
SINGS

M
MI

PS
MO

TIO
N

SH
A

Benchmarks

0.0

1.0

Ra
tio

Relative Execution Time Oz/O2

JS
WASM

Co
va

ria
nc

e
Co

rre
lat

ion
Ge

mm
Ge

mve
r

Ge
su

mmv
Sy

mm
Sy

rk
Sy

r2
k

Tr
mm

2m
m

3m
m

At
axBic
g

Do
itg

enMv
t

Ch
ole

sk
y

Du
rb

in
Gr

am
sc

hm
idt Lu

Lu
dc

mp
Tr

iso
lv

De
ric

he

Flo
yd

-w
ar

sh
all

Nu
ss

ino
v

Ad
i

Fd
td

-2
d

He
at

-3
d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

AD
PC

M
AE

S
BL

OW
FIS

H
DF

AD
D

DF
DI

V
DF

MU
L

DF
SINGS

M
MI

PS
MO

TIO
N

SH
A

Benchmarks

0.0

0.5

1.0
Relative Code Size Oz/O2

JS
WASM

Figure 5: Execution time (the top row) and resulting code size (the second row) of WebAssembly and JavaScript with -O1, -Ofast and -Oz,
compared to the result of -O2. Each benchmark was tested on Chrome v79 with the default input size.

0.0

1.0

2.0

Ra
tio

Relative Execution Time O1/O2

0.0

0.5

1.0
Relative Code Size O1/O2

0.0

1.0

Ra
tio

Relative Execution Time Ofast/O2

0.0

0.5

1.0

Relative Code Size Ofast/O2

Co
va

ria
nc

e
Co

rre
lat

ion
Ge

mm
Ge

mve
r

Ge
su

mmv
Sy

mm
Sy

rk
Sy

r2
k

Tr
mm

2m
m

3m
m

At
axBic
g

Do
itg

enMv
t

Ch
ole

sk
y

Du
rb

in
Gr

am
sc

hm
idt Lu

Lu
dc

mp
Tr

iso
lv

De
ric

he

Flo
yd

-w
ar

sh
all

Nu
ss

ino
v

Ad
i

Fd
td

-2
d

He
at

-3
d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

AD
PC

M
AE

S
BL

OW
FIS

H
DF

AD
D

DF
DI

V
DF

MU
L

DF
SINGS

M
MI

PS
MO

TIO
N

SH
A

Benchmarks

0.0

1.0

2.0

Ra
tio

Relative Execution Time Oz/O2

Co
va

ria
nc

e
Co

rre
lat

ion
Ge

mm
Ge

mve
r

Ge
su

mmv
Sy

mm
Sy

rk
Sy

r2
k

Tr
mm

2m
m

3m
m

At
axBic
g

Do
itg

enMv
t

Ch
ole

sk
y

Du
rb

in
Gr

am
sc

hm
idt Lu

Lu
dc

mp
Tr

iso
lv

De
ric

he

Flo
yd

-w
ar

sh
all

Nu
ss

ino
v

Ad
i

Fd
td

-2
d

He
at

-3
d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

AD
PC

M
AE

S
BL

OW
FIS

H
DF

AD
D

DF
DI

V
DF

MU
L

DF
SINGS

M
MI

PS
MO

TIO
N

SH
A

Benchmarks

0.0

0.5

1.0
Relative Code Size Oz/O2

Figure 6: Execution time (the top row) and code size (the second row) of x86 code with -O1, -Ofast and -Oz, relative to -O2.

(a) C source code

(c) WebAssembly with -Ofast(b) WebAssembly with –O2

7 (func $f5
8 ...
9 call $f3
10 local.get $l0
11 ...)

1 void adpcm_main() {
2 ...
3 decode(compressed[i / 2]);
4 result[i] = xout1;
5 result[i + 1] = xout2;
6 ...}

11 (func $f5
12 ...
13 call $f3
14 local.get $l0
15 i32.const 2
16 i32.shl
17 i32.const 1050296
18 i32.load
19 i32.store offset=1050300
20 local.get $l0
21 i32.const 1
22 i32.add
23 i32.const 2
24 i32.shl
25 i32.const 1050700
26 i32.load
27 i32.store offset=1050300
28 local.get $l0
29 ...)

-Ofast

-O2

Figure 7: ADPCM in WebAssembly with -O2 vs. -Ofast.

with four optimization levels, -O1, -O2, -Ofast, and -Oz. To en-
sure that the results are comparable, we use LLVM v3.7.0, the same
version as the one Cheerp is built upon.

(a) WebAssembly with –O2

1 (func $f41
2 ...
3 LOOP $L0
4 local.get $l10
5 i32.const 260
6 f64.convert_i32_s
7 f64.div
8 ...)

(b) WebAssembly with –O1

9 (func $f41 (param $p0 f64)
10 ...
11 LOOP $L0
12 local.get $l10
13 local.get $p0
14 f64.div
15 ...)

Figure 8: Covariance in WebAssembly with -O1 vs. -O2.

Fig. 6 shows the execution time and the resulting code size of
the compiled machine code. The result statistics shown in Table
2 (column ‘x86’) are aligned with the expected results described
in Fig. 1. Specifically, -Ofast generated the fastest code (0.97x
of the execution time relative to -O2). -Oz leads to the smallest
target code size (0.99x relative to -O2). -O2 produced code that
takes less execution time than -O1 (0.74x execution time) and -Oz
(0.82x execution time) but, more execution time than -Ofast (1.03x
execution time). In addition, the size of the code generated using
-O2 is smaller than -Ofast (0.90x) but larger than -Oz (1.01x).

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

Table 3: Chrome execution time statistics of Fig. 9.
Input Size SD #1 SD gmean2 SU #3 SU gmean4 All gmean5

Extra-small 1 14.42x ↓ 40 31.33x ↑ 26.99x ↑
Small 2 4.78x ↓ 39 9.92x ↑ 8.22x ↑
Medium 18 1.71x ↓ 23 6.70x ↑ 2.30x ↑
Large 16 1.88x ↓ 25 2.72x ↑ 1.44x ↑
Extra-large 18 1.39x ↓ 23 2.91x ↑ 1.58x ↑
1: # of benchmarks which WebAssembly runs slower than JavaScript.
SD is short for the slowdown. 2: Geometric mean for SD. 3: # of benchmarks
which WebAssembly runs faster than JavaScript. SU is short for speedup.
4: Geometric mean for SU. 5: Geometric mean for all 41 benchmarks.

Table 4: Chrome average memory usages (in KB) of Fig. 9.

Input Size JavaScript WebAssembly

Extra-small 879.41 2,001.54
Small 878.73 2,077.27
Medium 880.54 2,985.78
Large 883.10 26,991.05
Extra-large 889.20 100,943.88

4.2.2 Compilers (Cheerp vs. Emscripten). To evaluate the impact of
compilers on performances, we use both Emscripten and Cheerp to
compile the 41 C benchmarks with the baseline optimization (-O2).
The experiment was run on desktop Chromewith each benchmark’s
default input size (i.e., medium-sized input). The result shows that
benchmarks compiled by Emscripten run faster (2.70x geometric
mean) than benchmarks compiled by Cheerp, but they use 6.02x
(geometric mean) more memory. Note that Emscripten uses 16MB
as its page size, i.e., the smallest memory that needs to be allocated
for instantiating WebAssembly modules. By contrast, the page size
of Cheerp is 64KB. This difference makes programs compiled by
Cheerp use less memory but run slower because of the overhead in-
troduced by more frequent memory resizing requests (via invoking
the JS function memory.grow() [67]).

4.3 Impact of Input Sizes
WebAssembly’s compact code format and its low-level nature are
designed to be faster than JavaScript. However, our experiments
showed that JavaScript often outperforms WebAssembly, especially
when the input of the program is large.

4.3.1 Chrome performance with diverse input sizes. Wemeasure the
execution time and memory usage of WebAssembly and JavaScript
compiled from the 41 C benchmarks with five sets of input. Each
benchmark was compiled using -O2 and was tested on desktop
Chrome v79.
Execution Time. Fig. 9 shows execution time results and Table 3
shows the statistics of the results. In Table 3, “speedup" is the ratio
of execution speed of a faster program to the execution speed of a
slower program, and “slowdown" is the ratio of the execution time
of a slower program to the execution time of a faster program.

When benchmarks were tested with XS or S input, WebAssembly
is faster than JavaScript for almost all benchmarks (97.6% and 95.1%
for XS and S respectively). On average, WebAssembly achieves a
speedup of 26.99x for XS inputs and 8.22x for S inputs.

However, when the input size increases to M, there are 18 bench-
marks where WebAssembly becomes slower than JavaScript. For

Table 5: Firefox execution time statistics.
Input Size SD #1 SD gmean2 SU #3 SU gmean4 All gmean5

Extra-small 33 4.75x ↓ 8 2.04x ↑ 3.05x ↓
Small 29 2.41x ↓ 12 2.01x ↑ 1.52x ↓
Medium 16 1.87x ↓ 25 1.71x ↑ 1.08x ↑
Large 12 1.52x ↓ 29 1.85x ↑ 1.37x ↑
Extra-large 6 1.13x ↓ 35 1.86x ↑ 1.67x ↑
1: # of benchmarks which WebAssembly runs slower than JavaScript.
SD is short for the slowdown. 2: Geometric mean for SD. 3: # of benchmarks
which WebAssembly runs faster than JavaScript. SU is short for speedup.
4: Geometric mean for SU. 5: Geometric mean for all 41 benchmarks.

Table 6: Firefox average memory usages (in KB).

Input Size JavaScript WebAssembly

Extra-small 508.67 1,600.31
Small 492.02 1,674.03
Medium 525.02 2,583.72
Large 517.88 26,594.05
Extra-large 511.26 103,982.74

example, the benchmark ‘Lu’ in WebAssembly was 62.50x and 2.84x
faster than JavaScript for XS (N=40) and S (N=120) input. However,
it became 2.49x slower for M input (N=400). For the remaining
23 benchmarks, the performance gap between WebAssembly and
JavaScript also drops significantly (6.70x on average). For example,
theWebAssembly version of the ‘3mm’ benchmark is 47.71x, 10.54x,
and 1.12x faster than its JavaScript version, with XS input, S input,
and M input respectively. When the input size further increases to
L or XL, the number of benchmarks that JavaScript performs faster
is not increasing anymore.
Memory Usage. Table 4 shows the statistics of the memory re-
sult presented in Fig. 9. As shown in Table 4, the memory usage
of JavaScript stays fairly stable (between 878.73KB and 889.20KB)
with diverse inputs. By contrast, the WebAssembly programs con-
sume significantly more memory when the input size increases
to L (increases by ≈24MB) and XL (increases by ≈74MB). This is
because WebAssembly does not support garbage collection [39].
When a WebAssembly module was instantiated, a large chunk of
linear memory was initialized to emulate memory allocations. If
the linear memory is fully occupied, instead of reclaiming memory
that is no longer in use, the linear memory is further extended to
a bigger size. By contrast, JavaScript employs garbage collection
which dynamically monitors memory allocations and reclaims the
memory that is no longer needed. The result shows that JavaScript
is more memory-efficient than WebAssembly.

In addition, we observe that all PolyBenchC benchmarks com-
piled to JavaScript have similar memory usage (between 882 and
908 KB, the yellow line in sub-graphs from Covariance to Seidel-2d
in Fig. 9) regardless of input sizes. The structure of benchmarks: a
unified test framework with different calculation core, may lead to
this result. JavaScript’s memory management system introduced
above can handle all cores in benchmarks with similar memory us-
age. With a fixed amount of unified test framework memory usage,
different benchmarks finally have similar memory usage. On the
contrast, CHStone benchmarks did not have a unified framework,
so their JavaScript memory usage vary.

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

XS S M L XL
 0

100k

Ex
ec

. T
im

e
(m

s) Covariance

0

50k

100k

XS S M L XL
0

100k

Correlation

0

50k

100k

XS S M L XL
0

5k

10k

Gemm

0

50k

100k

XS S M L XL
0

100

200
Gemver

0

50k

100k

XS S M L XL
0

20

40
Gesummv

0

50k

100k

XS S M L XL
0

50k

Symm

0

50k

100k

M
em

or
y

(K
B)

XS S M L XL
 0

 20k

 40k

Ex
ec

. T
im

e
(m

s) Syrk

0

50k

100k

XS S M L XL
0

50k

100k
Syr2k

0

50k

100k

XS S M L XL
0

50k

Trmm

0

50k

XS S M L XL
0

50k

100k

2mm

0

100k

XS S M L XL
0

100k

3mm

0

100k

200k

XS S M L XL
0

50

Atax

0

50k

100k

M
em

or
y

(K
B)

XS S M L XL
 0

 50

Ex
ec

. T
im

e
(m

s) Bicg

0

50k

100k

XS S M L XL
0

2k

4k

Doitgen

0

50k

100k

XS S M L XL
0

100

200
Mvt

0

50k

100k

XS S M L XL
0

10k

20k
Cholesky

0

100k

200k

XS S M L XL
0

20

40

Durbin

1k

1.5k

2k

XS S M L XL
0

100k

200k

Gramschmidt

0

50k

100k

M
em

or
y

(K
B)

XS S M L XL
 0

100k

Ex
ec

. T
im

e
(m

s) Lu

0

100k

200k

XS S M L XL
0

100k

Ludcmp

0

100k

200k

XS S M L XL
0

10

Trisolv

0

50k

100k

XS S M L XL
0

1k

Deriche

0

200k

400k

XS S M L XL
0

200k

Floyd-warshall

0

50k

100k

XS S M L XL
0

100k

200k
Nussinov

0

50k

100k

M
em

or
y

(K
B)

XS S M L XL
 0

 50k

100k

Ex
ec

. T
im

e
(m

s) Adi

0

50k

100k

XS S M L XL
0

20k

Fdtd-2d

0

50k

100k

XS S M L XL
0

25k

50k

Heat-3d

0

50k

100k

XS S M L XL
0

10

20
Jacobi-1d

1k

1.5k

2k

XS S M L XL
0

20k

40k
Jacobi-2d

0

50k

100k

XS S M L XL
0

100k

Seidel-2d

0

50k

100k

M
em

or
y

(K
B)

XS S M L XL
 0

 10

Ex
ec

. T
im

e
(m

s) ADPCM

1k

1.5k

2k

XS S M L XL
0

2.50

5
AES

1k

1.5k

2k

XS S M L XL
0

10

BLOWFISH

1k

1.5k

2k

XS S M L XL
0

1

DFADD

1k

1.5k

2k

XS S M L XL
0

2

4

DFDIV

1k

1.5k

2k

XS S M L XL
Input size

0.50

1
DFMUL

1k

1.5k

2k

M
em

or
y

(K
B)

XS S M L XL
Input size

 0

 20

Ex
ec

. T
im

e
(m

s) DFSIN

1k

1.5k

2k

XS S M L XL
Input size

0.50

1
GSM

1k

1.5k

2k

XS S M L XL
Input size

0.20

0.40

MIPS

1k

1.5k

2k

XS S M L XL
Input size

2

4
MOTION

1k

1.5k

2k

XS S M L XL
Input size

0

5

10

SHA
JavaScript Execution Time
WebAssembly Execution Time

1k

1.5k

2k

M
em

or
y

(K
B)

JavaScript Memory
WebAssembly Memory

Figure 9: Execution time (left y-axis) and memory usage (right y-axis) of WebAssembly and JavaScript of the 41 benchmarks with five sets of
input. Each benchmark was compiled with optimization level -O2 and was tested on Chrome v79.

4.3.2 Firefox performance with diverse input sizes. We also measure
execution time and memory usage of WebAssembly and JavaScript
with five input sizes on Firefox v71.

Table 5 shows the statistics of the execution time on Firefox.
When input sizes are M, L, and XL, similar to Chrome, WebAssem-
bly achieves better performance than JavaScript (1.08x speedup
for M, 1.37x speedup for L, and 1.67x speedup for XL). However,
different from Chrome, the percentage of benchmarks where We-
bAssembly runs faster than JavaScript becomes higher when the
input size increases (60.1% for M, 70.7% for L, and 85.4% for XL).
When benchmarks were tested with XS or S input, most JavaScript
benchmarks are faster than WebAssembly (80.5% and 70.7% for XS
and S respectively), which is different from Chrome where most
JavaScript benchmarks were slower than WebAssembly. On aver-
age, WebAssembly performs 3.05x slowdown for XS input and 1.52x
slowdown for S input on Firefox.

The memory usage in Firefox is shown in Table 6. In general, Fire-
fox and Chrome memory usage has a similar trend. The JavaScript
memory usage is relatively stable (between 492.02KB and 517.88KB)
with different input sizes. By contrast, the WebAssembly programs
have significantly more memory usage when the input size in-
creases from M to L (increases by ≈24MB) and from L to XL (in-
creases by ≈77MB). Another noticeable point is Firefox’s JavaScript
memory usage is smaller than Chrome for all input sizes. For We-
bAssembly, Firefox uses less memory than Chrome when executing
XS, S, M, and L benchmarks, but uses more memory when executing
XL benchmarks.

4.4 Impact of JIT Optimization
4.4.1 JIT Optimization for JS vs. WASM. The JavaScript engines in
modern browsers leverage JIT compilation to improve the perfor-
mance of the frequently executed code (e.g., hot-loops) in JavaScrip-
t/WebAssembly programs. To better understand the correlation
between performance and JIT, we compare the execution time of
JS/WASM between JIT-enabled Chrome and JIT-less Chrome. Specif-
ically, we use the ‘–no-opt’ [41] flag and ‘–liftoff–no-wasm-
tier-up’ to disable the JIT optimization (i.e., TurboFan optimizing
compiler) for JavaScript and WebAssembly in Chrome.

21.76

38.37

0

20

40

60

80

100

120

140

co
v
ar

ia
n

ce

co
rr

el
at

io
n

g
em

m

g
em

v
er

g
es

u
m

m
v

sy
m

m

sy
rk

sy
r2

k

tr
m

m

2
m

m

3
m

m

at
ax

b
ic

g

d
o

it
g
en

m
v

t

ch
o
le

sk
y

d
u

rb
in

g
ra

m
sc

h
m

id
t

lu

lu
d

cm
p

tr
is

o
lv

d
er

ic
h

e

fl
o

y
d

-w
ar

sh
al

l

n
u

ss
in

o
v

ad
i

fd
td

-2
d

h
ea

t-
3

d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

se
id

el
-2

d

G
eo

.
m

ea
n

A
v

er
ag

e

(a) JavaScript – PolyBenchC (b) JavaScript – CHStone

1.00

1.02

0.0

0.5

1.0

1.5

2.0

A
D

P
C

M

A
E

S

B
L

O
W

F
IS

H

D
F

A
D

D

D
F

D
IV

D
F

M
U

L

D
F

S
IN

G
S

M

M
IP

S

M
O

T
IO

N

S
H

A

G
eo

.
m

ea
n

A
v

er
ag

e

(c) WebAssembly - PolyBenchC (d) WebAssembly - CHStone

0.0

0.5

1.0

1.5

2.0
1.10

1.11

0.0

0.5

1.0

1.5

2.0
1.09

1.09

A
D

P
C

M

A
E

S

B
L

O
W

F
IS

H

D
F

A
D

D

D
F

D
IV

D
F

M
U

L

D
F

S
IN

G
S

M

M
IP

S

M
O

T
IO

N

S
H

A

G
eo

.
m

ea
n

A
v

er
ag

e

co
v
ar

ia
n

ce

co
rr

el
at

io
n

g
em

m

g
em

v
er

g
es

u
m

m
v

sy
m

m

sy
rk

sy
r2

k

tr
m

m

2
m

m

3
m

m

at
ax

b
ic

g

d
o

it
g
en

m
v

t

ch
o
le

sk
y

d
u

rb
in

g
ra

m
sc

h
m

id
t

lu

lu
d

cm
p

tr
is

o
lv

d
er

ic
h

e

fl
o

y
d

-w
ar

sh
al

l

n
u

ss
in

o
v

ad
i

fd
td

-2
d

h
ea

t-
3

d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

se
id

el
-2

d

G
eo

.
m

ea
n

A
v

er
ag

e

Figure 10: Performance improvement with JIT optimization.

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

Table 7: WASM performance improvement with JIT on
Chrome vs. Firefox (numbers are execution speed ratio of
default setting to only enabling basic/optimizing compiler).

Benchmark Metric Basic only Optimizing only

LiftOff Baseline TurboFan Ion

PolyBenchC Geo. mean 1.10x 1.15x 0.88x 0.90x
Average 1.11x 1.20x 0.90x 0.90x

CHStone Geo. mean 1.09x 1.03x 1.07x 0.92x
Average 1.09x 1.04x 1.07x 0.93x

Overall Geo. mean 1.09x 1.12x 0.93x 0.91x
Average 1.10x 1.16x 0.95x 0.91x

Fig. 10(a) and Fig. 10(b) show performance improvement of
JavaScript compiled from PolyBench and CHStone, respectively.
Fig. 10(c) and Fig. 10(d) shows the results of WebAssembly compiled
from both benchmark suites. The x-axis presents target programs
under test and the y-axis represents the performance improvement
with JIT optimization compared with the executions without JIT.
Specifically, we run each program with and without JIT and com-
pare the measured execution times of them. For example, a value
of 20 in the graph means the program runs 20x faster with JIT than
the one without JIT. In each graph, the last two bars represent the
geometric mean and average.

In general, the performance of JavaScript programs is affected
significantly by JIT optimization. Programs from CHStone are af-
fected less than the programs from PolyBench. Our manual inspec-
tion shows that this is because, in part, the programs and inputs
of CHStone benchmarks are too small to trigger JIT at runtime.
However, the performance improvement ratios of benchmarks in
WebAssembly aremostly near 1, meaning that there is no significant
performance difference with and without JIT.

4.4.2 JIT Optimization for WebAssembly on Chrome vs. Firefox. As
shown in Fig. 10(c) and Fig. 10(d), no significant performance im-
provement for WebAssembly with JIT was observed on Chrome. To
investigate if the same behavior can be observed on a browser with
different execution engine, we repeat the study for WebAssembly
on JIT-enabled Firefox and JIT-disabled Firefox.

In particular, both Chrome v79 and Firefox v71 have a two-layer
compiler structure for WebAssembly: a basic compiler (‘LiftOff’
in Chrome and ‘Baseline’ in Firefox), which aims for quick com-
pilation at the expense of less effective code, and an optimizing
compiler (‘TurboFan’ in Chrome and ‘Ion’ in Firefox), that performs
JIT compilation to generate high-performance code while taking
more time to compile. The basic and optimizing compilers are both
enabled by default in Chrome and Firefox. To understand the effec-
tiveness of the two compilers, we perform experiments with three
different settings: only enabling basic compiler (optimizing com-
piler disabled, i.e., JIT disabled), only enabling optimizing compiler
(basic compiler disabled), and enabling both compilers (which is
the default browser setting) on Chrome and Firefox.

Table 7 shows the performance improvement of WebAssembly
with three experiment settings in Chrome (columns 3 and 5) and
Firefox (columns 4 and 6). The numbers in the table are the execu-
tion speed ratio of the default setting (that uses both compilers) to
the setting that only enables the basic/optimizing compiler. As can

Table 8: Arithmetic average statistics of Fig. 12 and Fig. 13.

JavaScript WebAssembly

Chrome Firefox Edge Chrome Firefox Edge

D.1 Exec. Time (ms) 45.57 48.26 63.62 65.23 39.65 83.53
M.2 Exec. Time (ms) 249.60 167.03 201.68 233.08 345.98 192.87

D.1 Memory (KB) 885.10 505.41 871.27 2,999.63 2,493.02 2,996.20
M.2 Memory (KB) 406.71 692.63 966.80 2,522.37 2,894.20 3,087.24
1, 2: D means Desktop and M means Mobile.

be seen, we observed similar results on both Chrome and Firefox for
JIT-enabled browser vs. JIT-disabled browser. Specifically, enabling
both compilers (i.e., the default setting) is slightly faster than the
JIT-disabled setting (i.e., only enabling the basic compiler) on both
Chrome and Firefox (1.09x geometric mean on Chrome and 1.12x
on Firefox). Additionally, we observed that enabling both compilers
is slightly slower than the setting that only enables the optimizing
compiler (0.93x on Chrome and 0.91x on Firefox), with the excep-
tion that CHStone benchmarks in WebAssembly runs faster with
the default setting on Chrome (1.07x faster).

4.5 Impact of Browsers and Platforms
To measure the performance impact of browsers and platforms,

we test WebAssembly and JavaScript in six deployment settings:
desktop Chrome (v79), desktop Firefox (v71), desktop Edge (v79),
mobile Chrome (v79), mobile Firefox (v68), and mobile Edge (v44).
Table 8 shows the statistics of execution time and memory usage
results. Detailed performance results can be found in Appendix C.
Execution Time of JS/WASM Across Browsers. On desktop,
Chrome is the fastest in executing the tested JavaScript programs.
Firefox is slightly slower, with 1.06x execution time, compared
to Chrome. However, Firefox executes WebAssembly much faster
(0.61x execution time) than Chrome. Such differences may indi-
cate Firefox’s WebAssembly implementations are more optimized
for performance. For example, in October 2018, Firefox released a
new version that has made the calls between WebAssembly and
JavaScript much faster by getting rid of unnecessary work to or-
ganize stack frames and taking the most direct path between func-
tions [11]. To quantify the context switch overhead, we measure
the time used for switching between WebAssembly and JavaScript
in three desktop browsers. The result shows that Firefox performs
much faster (only 0.13x execution time) than Chrome and Edge,
indicating that the optimization made by Firefox for function calls
between WebAssembly and JavaScript is efficient.

On mobile devices, the performance comparison of the three
browsers is different from the result on desktop. Specifically, Firefox
has better performance on executing JavaScript programs compared
to Chrome (0.67x execution time), but it takes more time (1.48x ex-
ecution time) to execute the WebAssembly counterparts. Similarly,
Edge performs worse than Chrome for both JavaScript (1.40x exe-
cution time) and WebAssembly (1.28x execution time) on desktop.
However, Edge outperforms Chrome on mobile for JavaScript (0.81x
execution time) and WebAssembly (0.83x execution time).
Execution Time of JS vs. WASM Across Browsers. As can be
seen, the performance of WebAssembly on Firefox and Chrome
differs significantly between mobile platform and desktop platform.
Unlike Chrome that uses the same codebase for both mobile and
desktop versions, Firefox for Desktop uses the Gecko web engine

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

Table 9: Results of Manually-Written JavaScript Programs.

Benchmark LOC Time (ms) Memory (KB)

Manual Cheerp WASM Manual Cheerp WASM

Po
ly
Be

nc
hC

3mm 18,387 179.680 59.050 52.577 3,986 885 4,321
Covariance 18,367 51.278 25.346 34.145 2,738 885 2,977
Syr2k 18,361 54.670 13.021 24.460 3,007 882 2,849
Ludcmp 18,400 73.050 39.878 23.440 4,367 883 4,513
Floyd-warshall 18,351 729.535 202.807 308.663 2,771 882 2,977
Heat-3d (W3C)
Heat-3d (math.js) 18,367 786.975 69.456 100.325 3,446 883 2,977

CH
St
on

e AES 896 2.405 3.210 0.136 827 858 1,951
BLOWFISH 723 36.705 12.039 0.245 856 910 1,951
SHA (W3C) 44 1.575 9.866 0.500 790 956 2,015
SHA (jsSHA) 342 13.120 9.866 0.500 804 956 2,015

and Firefox for Android uses the GeckoView engine [68]. Geck-
oView is a lightweight implementation of Gecko suited for mobile
devices. This difference in deployment between Chrome and Firefox
could explain the differences in performance. In addition, Firefox’s
JavaScript engine, SpiderMonkey, has some differences for mobile
architectures as well. SpiderMonkey features a two-tier compilation
system for WebAssembly. A quick, less-performant baseline compi-
lation is performed first, and then a more-optimized JIT compilation
is performed. Normally, SpiderMonkey uses the BaldrMonkey en-
gine [69] to perform the tier-2 compilation. However, on ARM64
platforms (such as the MI 6 used in our mobile evaluation), this
engine is not supported and is replaced with Cranelift for code
generation. This difference in engines also contributes to the per-
formance difference. The performance of Mobile Chrome and Edge
browsers are relatively similar because they both are forks of the
Chromium Blink engine.
Memory Usage. The memory usage results on desktop and mo-
bile browsers are shown in Table 8. On desktop, Firefox uses less
memory than Chrome for both JavaScript (0.57x) andWebAssembly
(0.83x). Edge uses similar memory as Chrome (0.98x for JavaScript
and 1.00x for WebAssembly). On mobile, Chrome uses less memory
than Firefox (0.59x for JavaScript and 0.87x for WebAssembly) and
Edge (0.42x for JavaScript and 0.82x for WebAssembly).

For all desktop browsers, WebAssembly uses more memory
(3.39x on Chrome, 4.93x on Firefox, and 3.44x on Edge) than Java-
Script. Mobile browsers show a similar result: WebAssembly uses
6.20x more memory on Chrome, 4.18x on Firefox, and 3.19x on Edge.
As we discussed in Sec. 4.3, unlike JavaScript that uses garbage
collection to reclaim memory no longer in use automatically, We-
bAssembly allocates a large chunk of memory at the instantiation
time for the module to use. WebAssembly memory is a growable
array of bytes, and the default size of the array is large compared to
JavaScript applications. A potential improvement on WebAssembly
memory usage is to implement more adaptive memory manage-
ment (e.g., by leveraging memory allocators) rather than creating a
giant memory block at the beginning of the execution.

4.6 Impact of Source Programs
To show that our findings are valid formore diverse programs, be-

sides the 41 compiled benchmarks, we study two additional program
sets: (1) 9 benchmarks (chosen from PolyBenchC and CHStone) that
were manually reimplemented in JavaScript and (2) 3 real-world
applications obtained from open-source GitHub repositories.

Table 10: GitHub Repository Data.
Benchmark Input LOC Proj. Size WA Time*+ JS Time* Ratio

Long.js
multiplication 10,000 mul(36,-2) 1,501 44KB 13.365 18.305 0.730
division 10,000 div(-2,-2) 1,506 44KB 42.190 81.130 0.520
remainder 10,000 mod(36,5) 1,501 44KB 7.910 13.675 0.578

Hyphen- en-us 18 KB English Text 2,264 95KB 308.105 328.550 0.938
opoly.js fr 18 KB French Text 2,277 96KB 310.600 323.560 0.960
FFmpeg - mp4 to avi 296 MB MP4 9,167,136 23,910KB 154,170.000 560,243.000 0.275
+: WA Time: WebAssembly execution time. *: Time unit: ms.

4.6.1 Benchmarks Manually-Implemented in JavaScript. We run the
manually implemented JavaScript programs on desktop Chrome. Ta-
ble 9 shows the results. Observe that most manually reimplemented
programs are slower that Cheerp generated programs. There are
two exceptions, AES and SHA (W3C), which outperform Cheerp
generated versions in terms of execution speed. Besides, all man-
ually written PolyBenchC benchmarks consume more memory
than the versions produced by Cheerp. However, reimplemented
versions of CHStone consume slightly less memory.

We make two observations. First, careful implementation of
JavaScript can outperform certain types of computations (e.g., AES
and SHA), echoing the findings in the previous sections. Second,
it is challenging to build optimal JavaScript programs in practice,
which means that compiler-generated versions may be beneficial
for developers to design efficient JavaScript programs (in terms of
both runtime and memory space overhead).

4.6.2 Real-World Applications. We selected three real-world appli-
cations from open-source GitHub projects, Long.js, Hyphenopoly.js,
and FFmpeg, and conducted six experiments: three experiments
for Long.js, two for Hyphenopoly.js, and one for FFmpeg. Table 10
shows the experiment input, the sum of LOCs of HTML, JavaScript,
and WAT (human-readable WebAssembly Text) files, the exeuction
time of WebAssembly and JavaScript, and execution time ratio of
WebAssembly to JavaScript.
Long.js. We test three operations using Long.js, multiplication, di-
vision, and remainder, in both WebAssembly and JavaScript. Rows
1-3 in Table 10 show the execution time result. In all three experi-
ments, WebAssembly executes faster than JavaScript. We manually
inspect the three programs to identify the number of arithmetic op-
erations executed by them. Our inspection shows that the JavaScript
versions run many more instructions than the WebAssembly ver-
sions because of the different mechanisms of implementing 64-bit
operations in JavaScript andWebAssembly. The count of arithmetic
operations executed is presented in Appendix D.
Hyphenopoly.js. We test Hyphenopoly.js in WebAssembly and
JavaScript using two input languages, English (en-us) and French
(fr). As shown in Table 10 rows 4-5, WebAssembly and JavaScript
have similar execution timewhileWebAssembly ismarginally faster
than JavaScript. Our manual investigation shows that a significant
amount of time is spent on input and output operations in which
WebAssembly is not specialized.
FFmpeg.Wemeasure the performance of this library inWebAssem-
bly and JavaScript by converting a 296 MB video file in MP4 to AVI.
Table 10 row 6 shows that WebAssembly executes much faster
than JavaScript. This is because the WebAssembly implementation
uses multiple WebWorkers to parallelize the conversion, while the
JavaScript implementation has no parallelization.

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

5 LIMITATIONS AND FUTUREWORK
Threats to Validity. Our study is potentially subject to several
threats, namely the representativeness of the chosen benchmarks
and the generalization of the results. According to [16, 70], We-
bAssembly was designed to be used in a variety of applications,
including compression, cryptographic libraries, games, image pro-
cessing, numeric computation, and others. In our experiment, we
choose 41 widely used C benchmark programs that perform nu-
meric computation, image processing, data compression, and cryp-
tographic algorithms. While we believe the programs we tested
can well represent some common WebAssembly use scenarios, we
do not include large standalone programs such as games in the
comparison. This is because of the complexity of their source code
and unsupported features that are incompatible with the compiler,
Cheerp is not able to compile these programs. In the future, we
plan to overcome the incompatible issues to support the evaluation
of complex real-world applications by modifying the compiler or
refactoring the source programs. Another threat concerns the gen-
eralization of the performance results. The benchmarks used in the
study were tested on three mainstream browsers, Google Chrome,
Mozilla Firefox, and Microsoft Edge. These browsers are evolving
quickly, releasing updates frequently. Thus, the results of this study
may not reflect the up-to-date performance of the browsers. To
reduce the bias introduced by different browsers, we ensure three
browsers were stable release versions and were released around
the same time (Dec. 2019).
FutureWork.We discuss several future directions that are worthy
of pursuing based on our empirical findings: First, we observed
that JavaScript performance was significantly affected by JIT opti-
mization. However, no substantial performance increase was seen
for WebAssembly with JIT. This is because the current browser
engine can identify hot code in JavaScript to substantially improve
its speed, but not so much in WebAssembly, suggesting that more
effort should be spent on optimizing WebAssembly code execu-
tion. Second, our experiments show that compiler optimizations
do not work as intended for WebAssembly. For example, -Ofast,
which is supposed to create the fastest target code, is slower than
-Oz and -O1 for WebAssembly. As described in Section 2.1.2, such
compiler inefficiencies are pervasive. These findings call for more
research effort on designing new compiler optimization techniques
for WebAssembly.

6 RELATEDWORK
WebAssembly Performance Measurement and Studies. Our
work is closely related to WebAssembly performance measurement
and studies [43, 46, 48, 70, 77, 81]. [43] measured the performance of
WebAssembly, asm.js, and native C implementations. [48] focused
on performance comparison of WebAssembly and C programs. [81]
studied WebAssembly performance for applications performing
sparse matrix-vector multiplication. [70] studied the prevalence of
WebAssembly in Alexa Top 1 Million Websites. Hilbig et al. [46]
presented an empirical study of 8,461 real-world WebAssembly
binaries and analyzed their security properties, source languages,
and use cases. To the best of our knowledge, our work conducts
a first comprehensive study on the performance of both generic
JavaScript and WebAssembly with diverse settings.

WebAssembly Analysis Tools, Protections, and Extensions.
Prior works onWebAssembly analysis tools, protections, and exten-
sions [28, 49, 53, 54, 71, 72, 78–80, 91] are also related. Wasabi [54]
is the first general-purpose framework for dynamically analyzing
WebAssembly. Lehmann et al. [53] analyzed how vulnerabilities in
memory-unsafe source languages are exploitable in WebAssembly
binaries. Swivel [71] presented a new compiler framework for hard-
ening WebAssembly against Spectre attacks. CT-wasm [91] intro-
duced a type-driven, strict extension to WebAssembly to facilitate
the verifiable secure implementation of cryptographic algorithms.
MS-Wasm [28] extended WebAssembly to enable developers to
capture low-level C/C++ memory semantics in WebAssembly at
compile time.
Web Performance Measurement. There have been several prior
works on testing web page performance and analyzing JavaScript,
PHP, and other web technologies [42, 55, 76, 82]. Besides, our work
is also relevant to studies [3, 18, 19, 26, 45, 52, 56, 57, 60, 83, 92],
researching the performance of operating systems, mobile applica-
tions, and virtual machines. The closest previous work is [45] which
also compares WebAssembly and JavaScript on desktop and mobile
devices. However, our work covers more diverse applications and
inputs, and tests on new versions of the browsers (i.e., our target
browsers are released two years later than those used in [45]). Our
results also differ from it where WebAssembly only performs better
on desktop Firefox, mobile Chrome, and mobile Edge.
Compiler Optimization Studies. [6] conducted a case study us-
ing the Intel Core 2 Duo processor to analyze the compiler optimiza-
tions required to obtain high performance on modern processors.
[51] leveraged machine learning techniques to predict the best op-
timization flags for creating efficient programs. [13] researched
the impact of compiler optimizations on high-level synthesis. By
contrast, we investigate the impact of compiler optimizations on
the performance of compiled WebAssembly programs.

7 CONCLUSION
This paper conducts the first systematic empirical study to un-

derstand the performance of WebAssembly applications along with
JavaScript. We perform measurements on different types of sub-
ject programs, including compiler-generated programs, manually-
written programs, and real-world applications, with diverse settings.
Our findings provide insights for WebAssembly tooling develop-
ers to optimize for performance improvement. We make our data
publicly available [2].

8 ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Balakr-

ishnan Chandrasekaran, for their constructive feedback. We greatly
appreciate the time and effort spent by our shepherd and other
reviewers in helping us improve our paper.

REFERENCES
[1] 2019. IEEE Standard for Floating-Point Arithmetic.
[2] 2020. Project Website. https://benchmarkingwasm.github.io/

BenchmarkingWebAssembly/
[3] Aldeida Aleti, Catia Trubiani, André van Hoorn, and Pooyan Jamshidi. 2018. An

efficient method for uncertainty propagation in robust software performance
estimation. Journal of Systems and Software 138 (2018), 222–235.

https://benchmarkingwasm.github.io/BenchmarkingWebAssembly/
https://benchmarkingwasm.github.io/BenchmarkingWebAssembly/

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

[4] Android. 2020. Android Debug Bridge (adb). https://developer.android.com/
studio/command-line/adb

[5] asm.js. 2020. asm.js - an extraordinarily optimizable, low-level subset of JavaScript.
http://asmjs.org/

[6] Aart JC Bik, David L Kreitzer, and Xinmin Tian. 2008. A case study on compiler
optimizations for the Intel® Core TM 2 Duo Processor. International Journal of
Parallel Programming 36, 6 (2008), 571–591.

[7] Stack Overflow Contributor Blindman67. 2018. Why is webAssem-
bly function almost 300 time slower than same JS function. https:
//stackoverflow.com/questions/48173979/why-is-webassembly-function-
almost-300-time-slower-than-same-js-function

[8] Caligatio. 2021. Caligatio/jsSHA. https://github.com/Caligatio/jsSHA
[9] Winston Chen. 2018. Performance Testing Web Assembly vs JavaScript.

https://medium.com/samsung-internet-dev/performance-testing-web-
assembly-vs-javascript-e07506fd5875

[10] Clang. 2020. LLVM’s Analysis and Transform Passes. https://llvm.org/docs/
Passes.html#argpromotion-promote-by-reference-arguments-to-scalars

[11] Lin Clark. 2018. Calls between JavaScript and WebAssembly are fi-
nally fast. https://hacks.mozilla.org/2018/10/calls-between-javascript-and-
webassembly-are-finally-fast-%F0%9F%8E%89/

[12] Stack Overflow Contributor ColinE. 2017. Why is my WebAssembly function
slower than the JavaScript equivalent? https://stackoverflow.com/questions/
46331830/why-is-my-webassembly-function-slower-than-the-javascript-
equivalent/46500236#46500236

[13] Jason Cong, Bin Liu, Raghu Prabhakar, and Peng Zhang. 2012. A study on
the impact of compiler optimizations on high-level synthesis. In International
Workshop on Languages and Compilers for Parallel Computing. Springer, 143–157.

[14] Emscripten Contributors. 2015. File System Overview — Emscripten
1.39.17 documentation. https://emscripten.org/docs/porting/files/
file_systems_overview.html#file-system-overview

[15] Emscripten Contributors. 2020. Emscripten 1.39.4 documentation. https://
emscripten.org/

[16] WebAssembly Contributors. 2020. Webassembly Use Cases. https://
webassembly.org/docs/use-cases/

[17] Netscape Communications Corporation and Inc. Sun Microsystems. 1995.
Netscape and Sun Announce JavaScript, the Open, Cross-Platform Object Script-
ing Language for Enterprise Networks and the Internet. https://web.archive.org/
web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html

[18] Luis Cruz and Rui Abreu. 2017. Performance-based guidelines for energy efficient
mobile applications. In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). IEEE, 46–57.

[19] Mariana Cunha and Nuno Laranjeiro. 2018. Assessing Containerized REST
Services Performance in the Presence of Operator Faults. In 2018 14th European
Dependable Computing Conference (EDCC). IEEE, 95–100.

[20] Damianociarla. 2021. Damianociarla/node-ffmpeg. https://github.com/
damianociarla/node-ffmpeg

[21] Damianociarla. 2021. Damianociarla/node-ffmpeg/lib/ffmpeg.js. https://
github.com/damianociarla/node-ffmpeg/blob/master/lib/ffmpeg.js

[22] DcodeIO. 2021. DcodeIO/Long.js. https://github.com/dcodeIO/Long.js/
[23] DcodeIO. 2021. Long.js Avoiding Overflow. https://github.com/dcodeIO/long.js/

blob/master/src/long.js#L56-L59
[24] DcodeIO. 2021. Long.js JavaScript Source Code. https://github.com/dcodeIO/

long.js/blob/master/src/long.js
[25] DcodeIO. 2021. Long.js WebAssembly Source Code. https://github.com/dcodeIO/

long.js/blob/master/src/wasm.wat
[26] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. 2004. Early per-

formance testing of distributed software applications. In Proceedings of the 4th
international workshop on Software and performance. 94–103.

[27] Mozilla developers. 2021. Bugzilla – Bug 37449 – llvm performs less inlining in
-O3 than in -O2. https://bugs.llvm.org/show_bug.cgi?id=37449

[28] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy, and
Deian Stefan. 2019. Position Paper: Progressive Memory Safety for WebAssembly.
In Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy (Phoenix, AZ, USA) (HASP ’19). Association for
Computing Machinery, New York, NY, USA, Article 4, 8 pages. https://doi.org/
10.1145/3337167.3337171

[29] MDNWeb Docs. 2020. Compiling an Existing C Module to WebAssembly. https:
//developer.mozilla.org/en-US/docs/WebAssembly/existing_C_to_wasm

[30] Haas et al. 2017. Bringing the web up to speed with WebAssembly. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 185–200.

[31] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. https://www.tensorflow.org/

[32] FFmpeg. 2021. FFmpeg. https://www.ffmpeg.org/
[33] ffmpegwasm. 2021. ffmpegwasm/ffmpeg.wasm. https://github.com/

ffmpegwasm/ffmpeg.wasm
[34] ffmpegwasm. 2021. ffmpegwasm/ffmpeg.wasm/dist/ffmpeg.min.js. https://

unpkg.com/@ffmpeg/ffmpeg@0.10.0/dist/ffmpeg.min.js

[35] Inc. Figma. 2021. The collaborative interface design tool. https://
www.figma.com/

[36] Free Software Foundation (FSF). 2020. GCC, the GNU Compiler Collection.
https://gcc.gnu.org/

[37] Google. 2020. Google Chrome - Download the Fast, Secure Browser from Google.
https://www.google.com/chrome/

[38] Google. 2020. V8 JavaScript Engine. https://v8.dev/
[39] WebAssembly Group. 2020. WebAssembly/design. https://github.com/

WebAssembly/design/blob/master/FutureFeatures.md
[40] WebAssembly Community Group. 2020. Use Cases - WebAssembly. https:

//webassembly.org/docs/use-cases/
[41] Jakob Gruber. 2021. JIT-less V8. https://v8.dev/blog/jitless
[42] Antonio Guerriero, Raffaela Mirandola, Roberto Pietrantuono, and Stefano Russo.

2019. A Hybrid Framework for Web Services Reliability and Performance Assess-
ment. In 2019 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 185–192.

[43] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the Web
up to Speed with WebAssembly. SIGPLAN Not. 52, 6 (June 2017), 185–200.

[44] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. 2009. Pro-
posal and quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis. Journal of Information Processing 17 (2009),
242–254.

[45] David Herrera, Hangfen Chen, Erick Lavoie, and Laurie Hendren. 2018. We-
bAssembly and JavaScript Challenge: Numerical program performance using
modern browser technologies and devices. University of McGill, Montreal: QC,
Technical report SABLE-TR-2018-2 (2018).

[46] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of
Real-WorldWebAssembly Binaries: Security, Languages, Use Cases. In Proceedings
of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for
Computing Machinery, New York, NY, USA, 2696–2708. https://doi.org/10.1145/
3442381.3450138

[47] Raymond Hill. 2019. gorhill/ublock. https://github.com/gorhill/uBlock
[48] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. 2019. Not

so fast: analyzing the performance of webassembly vs. native code. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19). 107–120.

[49] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser Brown,
Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan. 2021. Trust, but
verify: SFI safety for native-compiled Wasm. In NDSS. Internet Society.

[50] Josdejong. 2021. Josdejong/mathjs. https://github.com/josdejong/mathjs
[51] Yuriy Kashnikov, Jean Christophe Beyler, and William Jalby. 2012. Compiler op-

timizations: Machine learning versus o3. In International Workshop on Languages
and Compilers for Parallel Computing. Springer, 32–45.

[52] Heejin Kim, Byoungju Choi, and W Eric Wong. 2009. Performance testing
of mobile applications at the unit test level. In 2009 Third IEEE International
Conference on Secure Software Integration and Reliability Improvement. IEEE,
171–180.

[53] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is
NewAgain: Binary Security ofWebAssembly. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 217–234. https://www.usenix.org/
conference/usenixsecurity20/presentation/lehmann

[54] Daniel Lehmann andMichael Pradel. 2018. Wasabi: A Framework for Dynamically
Analyzing WebAssembly. CoRR abs/1808.10652 (2018). arXiv:1808.10652 http:
//arxiv.org/abs/1808.10652

[55] Kai Lei, Yining Ma, and Zhi Tan. 2014. Performance comparison and evaluation
of web development technologies in php, python, and node. js. In 2014 IEEE 17th
international conference on computational science and engineering. IEEE, 661–668.

[56] Zhiming Liu, Nafees Qamar, and Jie Qian. 2013. A quantitative analysis of
the performance and scalability of de-identification tools for medical data. In
International Symposium on Foundations of Health Informatics Engineering and
Systems. Springer, 274–289.

[57] Goran Martinovic, Josip Balen, and Bojan Cukic. 2012. Performance Evaluation
of Recent Windows Operating Systems. J. UCS 18, 2 (2012), 218–263.

[58] MDN. 2020. WebAssembly.Memory(). https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/WebAssembly/Memory/Memory

[59] MDN. 2021. Number.MAX-SAFE-INTEGER - JavaScript: MDN.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Number/MAX_SAFE_INTEGER

[60] Tianhui Meng, KatinkaWolter, and QiushiWang. 2015. Security and performance
tradeoff analysis of mobile offloading systems under timing attacks. In European
Workshop on Performance Engineering. Springer, 32–46.

[61] Microsoft. 2020. Download New Microsoft Edge Browser: Microsoft. https:
//www.microsoft.com/en-us/edge

[62] Mnater. 2021. Mnater/Hyphenator. https://github.com/mnater/Hyphenator
[63] Mnater. 2021. Mnater/Hyphenator/Hyphenopoly-Loader.js. https://github.com/

mnater/Hyphenator/blob/master/Hyphenator_Loader.js
[64] Mnater. 2021. Mnater/Hyphenopoly. https://github.com/mnater/Hyphenopoly

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
http://asmjs.org/
https://stackoverflow.com/questions/48173979/why-is-webassembly-function-almost-300-time-slower-than-same-js-function
https://stackoverflow.com/questions/48173979/why-is-webassembly-function-almost-300-time-slower-than-same-js-function
https://stackoverflow.com/questions/48173979/why-is-webassembly-function-almost-300-time-slower-than-same-js-function
https://github.com/Caligatio/jsSHA
https://medium.com/samsung-internet-dev/performance-testing-web-assembly-vs-javascript-e07506fd5875
https://medium.com/samsung-internet-dev/performance-testing-web-assembly-vs-javascript-e07506fd5875
https://llvm.org/docs/Passes.html#argpromotion-promote-by-reference-arguments-to-scalars
https://llvm.org/docs/Passes.html#argpromotion-promote-by-reference-arguments-to-scalars
https://hacks.mozilla.org/2018/10/calls-between-javascript-and-webassembly-are-finally-fast-%F0%9F%8E%89/
https://hacks.mozilla.org/2018/10/calls-between-javascript-and-webassembly-are-finally-fast-%F0%9F%8E%89/
https://stackoverflow.com/questions/46331830/why-is-my-webassembly-function-slower-than-the-javascript-equivalent/46500236#46500236
https://stackoverflow.com/questions/46331830/why-is-my-webassembly-function-slower-than-the-javascript-equivalent/46500236#46500236
https://stackoverflow.com/questions/46331830/why-is-my-webassembly-function-slower-than-the-javascript-equivalent/46500236#46500236
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/docs/porting/files/file_systems_overview.html#file-system-overview
https://emscripten.org/
https://emscripten.org/
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://github.com/damianociarla/node-ffmpeg
https://github.com/damianociarla/node-ffmpeg
https://github.com/damianociarla/node-ffmpeg/blob/master/lib/ffmpeg.js
https://github.com/damianociarla/node-ffmpeg/blob/master/lib/ffmpeg.js
https://github.com/dcodeIO/Long.js/
https://github.com/dcodeIO/long.js/blob/master/src/long.js#L56-L59
https://github.com/dcodeIO/long.js/blob/master/src/long.js#L56-L59
https://github.com/dcodeIO/long.js/blob/master/src/long.js
https://github.com/dcodeIO/long.js/blob/master/src/long.js
https://github.com/dcodeIO/long.js/blob/master/src/wasm.wat
https://github.com/dcodeIO/long.js/blob/master/src/wasm.wat
https://bugs.llvm.org/show_bug.cgi?id=37449
https://doi.org/10.1145/3337167.3337171
https://doi.org/10.1145/3337167.3337171
https://developer.mozilla.org/en-US/docs/WebAssembly/existing_C_to_wasm
https://developer.mozilla.org/en-US/docs/WebAssembly/existing_C_to_wasm
https://www.tensorflow.org/
https://www.ffmpeg.org/
https://github.com/ffmpegwasm/ffmpeg.wasm
https://github.com/ffmpegwasm/ffmpeg.wasm
https://unpkg.com/@ffmpeg/ffmpeg@0.10.0/dist/ffmpeg.min.js
https://unpkg.com/@ffmpeg/ffmpeg@0.10.0/dist/ffmpeg.min.js
https://www.figma.com/
https://www.figma.com/
https://gcc.gnu.org/
https://www.google.com/chrome/
https://v8.dev/
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/
https://v8.dev/blog/jitless
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://github.com/gorhill/uBlock
https://github.com/josdejong/mathjs
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://arxiv.org/abs/1808.10652
http://arxiv.org/abs/1808.10652
http://arxiv.org/abs/1808.10652
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Memory/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Memory/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://www.microsoft.com/en-us/edge
https://www.microsoft.com/en-us/edge
https://github.com/mnater/Hyphenator
https://github.com/mnater/Hyphenator/blob/master/Hyphenator_Loader.js
https://github.com/mnater/Hyphenator/blob/master/Hyphenator_Loader.js
https://github.com/mnater/Hyphenopoly

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

[65] Mnater. 2021. Mnater/Hyphenopoly/Hyphenopoly-Loader.js. https://
github.com/mnater/Hyphenopoly/blob/master/Hyphenopoly_Loader.js

[66] Mozilla. 2020. Firefox: Internet for people, not profit. https://www.mozilla.org/
en-US/

[67] Mozilla. 2020. WebAssembly Memory. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_objects/WebAssembly/Memory

[68] Mozilla. 2021. Geckoview. https://mozilla.github.io/geckoview/
[69] Mozilla. 2021. SpiderMonkey JavaScript/WebAssembly Engine. https://

spidermonkey.dev/docs/
[70] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. 2019.

New Kid on the Web: A Study on the Prevalence of WebAssembly in the Wild. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 23–42.

[71] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan John-
son, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean
Tullsen, and Deian Stefan. 2021. Swivel: HardeningWebAssembly against Spectre.
In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,
1433–1450. https://www.usenix.org/conference/usenixsecurity21/presentation/
narayan

[72] Shravan Narayan, Tal Garfinkel, Sorin Lerner, Hovav Shacham, and Deian Stefan.
2019. Gobi: WebAssembly as a practical path to library sandboxing. arXiv preprint
arXiv:1912.02285 (2019).

[73] Wasm pack contributors. 2019. Wasm Speed Are No Faster Than JS. https:
//github.com/rustwasm/wasm-pack/issues/558

[74] Senthil Padmanabhan and Pranav Jha. 2020. WebAssembly at eBay: A Real-World
Use Case. https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-
world-use-case/

[75] Louis-Noël Pouchet, U Bondugula, and T Yuki. 2016. PolyBench/C 4.2. Polyhedral
Benchmark Suite.

[76] Raghu Ramakrishnan and Arvinder Kaur. 2020. An empirical comparison of
predictivemodels for web page performance. Information and Software Technology
(2020), 106307.

[77] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An Empiri-
cal Study of Bugs inWebAssembly Compilers. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE).

[78] Alan Romano and Weihang Wang. 2020. WASim: Understanding WebAssembly
Applications through Classification. In 2020 35th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). 1321–1325. https://doi.org/
10.1145/3324884.3415293

[79] Alan Romano and Weihang Wang. 2020. WasmView: Visual Testing for We-
bAssembly Applications. In Proceedings of the 42nd International Conference
on Software Engineering Companion (Seoul, South Korea) (ICSE’20 Compan-
ion). Association for Computing Machinery, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3377812.3382155

[80] Alan Romano, Yunhui Zheng, and Weihang Wang. 2020. MinerRay: Semantics-
Aware Analysis for Ever-Evolving Cryptojacking Detection. In 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
1129–1140. https://doi.org/10.1145/3324884.3416580

[81] Prabhjot Sandhu, David Herrera, and Laurie Hendren. 2018. Sparse matrices on
the web: Characterizing the performance and optimal format selection of sparse
matrix-vector multiplication in JavaScript and WebAssembly. In Proceedings of
the 15th International Conference on Managed Languages & Runtimes. 1–13.

[82] Marija Selakovic and Michael Pradel. 2016. Performance issues and optimiza-
tions in JavaScript: an empirical study. In Proceedings of the 38th International
Conference on Software Engineering. 61–72.

[83] Yuliang Shi, Xudong Zhao, Shanqing Guo, Shijun Liu, and Lizhen Cui. 2016.
SRConfig: An Empirical Method of Interdependent Soft Configurations for Im-
proving Performance in n-Tier Application. In 2016 IEEE International Conference
on Services Computing (SCC). IEEE, 601–608.

[84] Daniel Smilkov, Nikhil Thorat, and Ann Yuan. 2020. Introducing the WebAssem-
bly backend for TensorFlow.js. https://blog.tensorflow.org/2020/03/introducing-
webassembly-backend-for-tensorflow-js.html

[85] The Clang Team. 2020. clang - the Clang C, C++, and Objective-C compiler
— Clang 11 documentation. https://clang.llvm.org/docs/CommandGuide/
clang.html#cmdoption-o0

[86] Leaning Technologies. 2020. Cheerp | C/C++ to WebAssembly compiler. https:
//leaningtech.com/pages/cheerp.html

[87] Aaron Turner. 2018. WebAssembly Is Fast: A Real-World Benchmark of We-
bAssembly vs. ES6. https://medium.com/@torch2424/webassembly-is-fast-a-
real-world-benchmark-of-webassembly-vs-es6-d85a23f8e193

[88] Vladimir. 2018. WebAssembly vs. the world. Should you use WebAssembly?
https://blog.sqreen.com/webassembly-performance/

[89] W3C. 2021. Web Cryptography API. https://w3c.github.io/webcrypto/
[90] Evan Wallace. 2016. Evanw/thinscript: A low-level programming language

inspired by TypeScript. https://github.com/evanw/thinscript
[91] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan.

2019. CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem.
Proc. ACM Program. Lang. 3, POPL, Article 77 (Jan. 2019), 29 pages. https:

//doi.org/10.1145/3290390
[92] Junjun Zheng, Hiroyuki Okamura, and Tadashi Dohi. 2016. Performance Eval-

uation of VM-based Intrusion Tolerant Systems with Poisson Arrivals. In 2016
Fourth International Symposium on Computing and Networking (CANDAR). IEEE,
181–187.

A EXPERIMENT PARAMETERS USEDWITH
GOOGLE CHROME

Table 11: Google Chrome Parameters.

Section Figures/Tables Parameter Impact
Sec. 4.2 Figure 5, 6

Table 2
chrome.exe
–incognito

Prevent the browser from
caching the benchmark.

Sec. 4.3 Figure 9
Table 3, 4, 5, 6

chrome.exe
–incognito

Prevent the browser from
caching the benchmark.

Sec. 4.4

Figure 10
Table 7

chrome.exe
–incognito

Prevent the browser from
caching the benchmark.
By default (without extra
parameters), both LiftOff
and TurboFan compilers
are enabled.

Figure 10 chrome.exe
–js-flags="–no-opt"
–incognito

"–no-opt" enables the
LiftOff compiler only for
JavaScript benchmarks.

Figure 10
Table 7

chrome.exe
–js-flags="–liftoff
–no-wasm-tier-up"
–incognito

"–liftoff
–no-wasm-tier-up" enables
the LiftOff compiler only
for WebAssembly
benchmarks.

Table 7 chrome.exe –js-
flags="–no-liftoff
–no-wasm-tier-up"
–incognito

"–no-liftoff
–no-wasm-tier-up" enables
the TurboFan compiler
only for WebAssembly
benchmarks.

Sec. 4.5 Figure 11, 12
Table 8

chrome.exe
–incognito

Prevent the browser from
caching the benchmark.

Sec. 4.6 Table 9, 10, 11 chrome.exe
–incognito

Prevent the browser from
caching the benchmark.

Table 11 shows the parameters we used with Google Chrome in
each subsection of Sec. 4 and discuss their impacts on the results.

B STATISTICAL ANALYSIS OF COMPILER
OPTIMIZATION RESULTS

Fig. 11 shows the statistics of execution time, code size, and
memory usage of JS, WASM, and x86 with different optimization
levels on desktop Chrome. The x-axis represents the execution time,
code size, and memory usage results and the y-axis represents the
five-number summary of the result: the minimum, first quartile,
median, third quartile, and maximum.

In general, the execution time of JS, WASM, and x86 varies across
optimization levels. While the execution time medians of JS and
WASM across optimization levels are close to 1, the execution time
medians of x86 with O1/O2 and Oz/O2 are higher than 1 (1.29
with O1/O2 and 1.16 with Oz/O2). This result is in line with the
geometric means of x86 execution time with O1/O2 and Oz/O2 as
shown in Table 2 (1.36x and 1.22x, respectively). On the other hand,
the code size and memory usage has little variation and is close to
1x except for ‘x86 Code Size Ofast/O2’. According to Table 2, the

https://github.com/mnater/Hyphenopoly/blob/master/Hyphenopoly_Loader.js
https://github.com/mnater/Hyphenopoly/blob/master/Hyphenopoly_Loader.js
https://www.mozilla.org/en-US/
https://www.mozilla.org/en-US/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/WebAssembly/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/WebAssembly/Memory
https://mozilla.github.io/geckoview/
https://spidermonkey.dev/docs/
https://spidermonkey.dev/docs/
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://github.com/rustwasm/wasm-pack/issues/558
https://github.com/rustwasm/wasm-pack/issues/558
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/
https://doi.org/10.1145/3324884.3415293
https://doi.org/10.1145/3324884.3415293
https://doi.org/10.1145/3377812.3382155
https://doi.org/10.1145/3324884.3416580
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://clang.llvm.org/docs/CommandGuide/clang.html#cmdoption-o0
https://clang.llvm.org/docs/CommandGuide/clang.html#cmdoption-o0
https://leaningtech.com/pages/cheerp.html
https://leaningtech.com/pages/cheerp.html
https://medium.com/@torch2424/webassembly-is-fast-a-real-world-benchmark-of-webassembly-vs-es6-d85a23f8e193
https://medium.com/@torch2424/webassembly-is-fast-a-real-world-benchmark-of-webassembly-vs-es6-d85a23f8e193
https://blog.sqreen.com/webassembly-performance/
https://w3c.github.io/webcrypto/
https://github.com/evanw/thinscript
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3290390

IMC ’21, November 2–4, 2021, Virtual Event, USA Y. Yan et al.

JS
Tim

e O
1/O

2

JS
Tim

e O
fas

t/O
2

JS
Tim

e O
z/O

2

WASM
 Ti

me O
1/O

2

WASM
 Ti

me O
fas

t/O
2

WASM
 Ti

me O
z/O

2

x8
6 T

im
e O

1/O
2

x8
6 T

im
e O

fas
t/O

2

x8
6 T

im
e O

z/O
2

JS
CS O

1/O
2

JS
CS O

fas
t/O

2

JS
CS O

z/O
2

WASM
 CS O

1/O
2

WASM
 CS O

fas
t/O

2

WASM
 CS O

z/O
2

x8
6 C

S O
1/O

2

x8
6 C

S O
fas

t/O
2

x8
6 C

S O
z/O

2

JS
Mem

 O1/O
2

JS
Mem

 Ofas
t/O

2

JS
Mem

 Oz/O
2

WASM
 Mem

 O1/O
2

WASM
 Mem

 Ofas
t/O

2

WASM
 Mem

 Oz/O
2

Results

0.5
1.0
1.5
2.0
2.5

Ra
tio

Compiler Optimization Results Statistics

Figure 11: Execution time (Time), code size (CS), and memory us-
age (Mem) of JS, WASM, and x86 with different optimization levels
on Chrome. Each box and its whiskers represent the five-number
summary of the result: theminimum, first quartile, median (shown
above each bar), third quartile, and maximum.

geometric mean of x86 code size with Ofast/O2 is 1.11x, which is
consistent with the result in Fig. 11.

C RESULTS OF BROWSERS AND PLATFORMS
Fig. 12 shows the execution time result of WebAssembly and

JavaScript on desktop/mobile Chrome, desktop/mobile Firefox, and

desktop/mobile Edge. Fig. 13 shows the memory usage result. The
statistics of these results are summarized in Table 8.

D OPERATIONS IN LONG.JS

Table 12: Long.js Number of Operations

Benchmark JS/WASM ADD MUL DIV REM SHIFT AND OR Total

Multiplication JS 160k 100k 0 0 120k 110k 20k 510k

WASM 0 10k 0 0 30k 0 20k 60k

Division JS 80k 100k 160k 0 10k 0 0 350k

WASM 0 0 10k 0 30k 0 20k 60k

Remainder JS 170k 110k 20k 0 120k 110k 20k 550k

WASM 0 0 0 10k 30k 0 20k 60k

To obtain the number of arithmetic operations in Long.js pro-
grams, we manually instrument both JavaScript and WebAssembly
programs’ arithmetic operations. Table 12 shows the result. Observe
that the JavaScript versions run more many more instructions than
the WebAssembly versions.

This is because these 64-bit operations involve fewer calcula-
tions in WebAssembly. Specifically, WebAssembly supports 64-bit
arithmetic operations by treating each 64-bit integer input as two
32-bit integers to perform the calculation, and merging the results
to a single 64-bit integer. By contrast, the Long.js library supports
64-bit integer arithmetic operations in JavaScript by splitting one
64-bit integer into four 16-bit integers to avoid overflow [23].

Understanding the Performance of WebAssembly Applications IMC ’21, November 2–4, 2021, Virtual Event, USA

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

500

Ex
ec

ut
io

n
Ti

m
e

(m
s) Execution Time - Desktop Chrome

JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

1000

Execution Time - Mobile Chrome
JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

500

Ex
ec

ut
io

n
Ti

m
e

(m
s) Execution Time - Desktop Firefox

JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

1000

Execution Time - Mobile Firefox
JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A

Benchmarks

0

500

Ex
ec

ut
io

n
Ti

m
e

(m
s) Execution Time - Desktop Edge

JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A

Benchmarks

0

1000

Execution Time - Mobile Edge
JS
WASM

Figure 12: Execution time of WebAssembly and JavaScript on Chrome for desktop, Firefox for desktop, Edge for desktop, Chrome for mobile,
Firefox for mobile, and Edge for mobile. Each benchmark was tested with default input using the baseline compiler optimization (-O2).

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

5000

M
em

or
y

(K
B)

Memory - Desktop Chrome
JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

5000

Memory - Mobile Chrome
JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

5000

M
em

or
y

(K
B)

Memory - Desktop Firefox
JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A
0

5000

Memory - Mobile Firefox
JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A

Benchmarks

0

5000

M
em

or
y

(K
B)

Memory - Desktop Edge
JS
WASM

Cov
ari

an
ce

Corr
ela

tio
n

Gem
m

Gem
ve

r

Gesu
mmv

Sy
mm

Sy
rk
Sy

r2kTrm
m
2m

m
3m

m
AtaxBicg

Doit
ge

n
Mvt

Cho
les

ky
Durb

in

Gram
sch

midt Lu

Lud
cm

p
Tri

sol
v

Deri
che

Flo
yd

-wars
ha

ll

Nuss
ino

vAdi

Fd
td-

2d

Hea
t-3

d

Jac
ob

i-1
d

Jac
ob

i-2
d

Se
ide

l-2
d

ADPC
MAES

BLO
WFIS

H
DFA

DD
DFD

IV
DFM

UL
DFS

IN
GSMMIPS

MOTIO
N
SH

A

Benchmarks

0

5000

Memory - Mobile Edge
JS
WASM

Figure 13: Memory usage of WebAssembly and JavaScript on Chrome for desktop, Firefox for desktop, Edge for desktop, Chrome for mobile,
Firefox for mobile, and Edge for mobile.

	Abstract
	1 Introduction
	2 Background
	2.1 WebAssembly Compilers
	2.2 Execution Environment
	2.3 Program Input Size

	3 Methodology
	3.1 Source Code Transformation
	3.2 Compilation to Wasm/JS
	3.3 Deployment Instrumentation
	3.4 Data Collection

	4 Evaluation
	4.1 Subject Programs
	4.2 Impact of Compilers and Compiler Optimizations
	4.3 Impact of Input Sizes
	4.4 Impact of JIT Optimization
	4.5 Impact of Browsers and Platforms
	4.6 Impact of Source Programs

	5 Limitations and Future Work
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References
	A Experiment Parameters Used With Google Chrome
	B Statistical Analysis of Compiler Optimization Results
	C Results of Browsers and Platforms
	D Operations in Long.js

