
Subscription Normalization for Effective
Content-Based Messaging

K.R. Jayaram, Weihang Wang, and Patrick Eugster

Abstract—Efficient subscription summarization and event matching is key to the scalability of content-based publish/subscribe

networks (CPSNs). Current summarization and event matching mechanisms based on subscription subsumption induce heavy event

processing load on brokers degrading the performance of CPSNs especially under high rates of churn, i.e., addition, deletion, or

modification of subscriptions. Yet, many modern CPS applications such as location-based services or algorithmic trading inherently

rely on high frequency subscription changes. This paper describes Beretta, a dynamic CPSN which sustains high throughput and low

event-propagation latencies even under a high frequency of subscription changes. Beretta leverages strong event typing and

represents all subscriptions in a normalized form as combinations of value intervals and set inclusions without compromising on

expressiveness. Beretta’s “split and subsume” broker algorithm reduces the complexity of matching an event from OðKNÞ to
OðK logN þ jresultjÞ, withN being the number of subscriptions for the event type andK the number of its attributes. Event types and

normalization are exploited to split subscriptions into predicates on individual event types and attributes and to efficiently regroup these

in segment trees and hash maps which yield excellent subsumption properties and support attribute-wise split filtering during event

matching. Normalization enables the systematic introduction of parameters into subscriptions to support both parametric and structural

updates. This paper also empirically demonstrates the performance improvements due to our techniques through realistic algorithmic

trading and highway traffic monitoring benchmarks.

Index Terms—Subscription, summarization, subsumption, normalization, content-based, messaging

Ç

1 INTRODUCTION

BY focusing on the exchanges among interacting parties
rather than the parties themselves, the publish/subscribe

paradigm [1] is an appealing candidate for building scalable
networked distributed systems. This dynamic interaction
culminates in content-based publish/subscribe (CPS),
where subscriptions are based on event content rather than
on channels or topics. Content-centric communication
abstractions have been more recently investigated in the
context of future Internet design [2], [3]; the advent of
software-defined networking (SDN) supports the imple-
mentation of such models.

effectively and efficiently route published events to sub-
scribers with corresponding interests, existing application-
level CPS systems typically construct overlay networks called
“content-based publish/subscribe networks” (CPSNs). A
CPSN consists of several event routers—commonly referred
to as brokers—that interconnect publishers and subscribers
often making use of advertisements of publishers in addition
to subscriptions to transmit events to subscribers. That is,
advertisements and subscriptions are propagated down-
and up-stream respectively to set up connections such as to
ensure that there is a path for the propagation of an event

from any publisher to any subscriber with a potentially
matching subscription [1]. Current CPSNs however present
a number of limitations in their core constituents:

� Matching algorithms. Matching events to subscrip-
tions, which occurs at each broker in a CPSN, is
key to the efficient routing of events. Many
matching algorithms, however, have a time com-
plexity of OðNÞ, N being the number of subscrip-
tions matched.

� Subscription summaries. Efficient subscription sum-
marization is a key requirement for efficient rout-
ing of subscriptions and to avoid storing every
subscription at every broker. Existing summariza-
tion algorithms, however, choose accuracy over
efficiency thereby producing complex subscription
summaries.

� Subscription updates. Several emerging CPS applica-
tions involve updates to their subscriptions at a
high frequency [4], [5]. Examples include algorith-
mic trading and location-based services; examples
for corresponding updates are changes to threshold
values on prices for purchasing stock and updates
to absolute geographical ranges of interest based on
the change of vantage point induced by mobility
respectively. In existing CPSNs, the typical way to
update a subscription is through a re-subscription,
which involves issuing a new subscription and can-
celing the old (stale) subscription. Re-subscriptions,
however, typically involve OðNÞ operations at least
at one broker and potentially at many more brokers
depending on the effectiveness of subscription sum-
marization algorithm.

� K.R. Jayaram is with IBM T.J. Watson Research Center, New York, NY.
E-mail: jayaramkr@us.ibm.com.

� W. Wang and P. Eugster are with the Department of Computer Science,
Purdue University, West Lafayette, IN.
E-mail: wang1315@purdue.edu, p@cs.purdue.edu.

Manuscript received 16 July 2013; revised 10 June 2014; accepted 18 June
2014. Date of publication 7 Sept. 2014; date of current version 7 Oct. 2015.
Recommended for acceptance by D. A. Bader.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2355823

3184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2015

1045-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

In this paper, we present Beretta, a novel CPSN which
tackles the above-mentioned three problems through the
following technical contributions:

1) Subscription normalization based on strong event typ-
ing without loss of expressivity of subscriptions. The
normalized form is a combination of value intervals
and set inclusions. Our use of event types in lieu of a
structural approach allows for aggressive perfor-
mance optimizations without hampering interopera-
bility or the addition of new event types.

2) An efficient algorithm for matching events to sub-
scriptions, which reduces the number of elementary
predicates evaluated for matching an event from
OðKNÞ to OðK logNÞ, with N being the number of
subscriptions for the event type and K the number
of its attributes. Our algorithm relies on a divide and
conquer strategy which we call “split and sub-
sume”—event types and normalization are exploited
to split subscriptions twice, first into predicates on
individual event types and further based on attrib-
utes; and to efficiently regroup these in augmented
segment trees and hash maps.

3) Inherent parameterization of normalized subscriptions
to efficiently implement parameter-based [4], [5] as
well as structural subscription updates.

4) Subscription summarization approximation to efficiently
handle subscription updates as well as joining/leav-
ing of subscribers in decentralized CPSNs.

While normalization has long been used in the manage-
ment of data “at rest”, we believe our work is the first to
apply such concepts to queries on live data, and to leverage
them for query updates. This paper extends a previous pub-
lication at ICDCS 2011 [6], yet includes a novel means of
intersecting partial match sets efficiently based on aug-
mented segment trees, and evaluates our approach through
a new real-life benchmark.

The rest of this paper is organized as follows. Section 2
presents background information. Section 3 presents
the state-of-the-art and its limitations. Section 4 introduces
our subscription model. Section 5 describes our algorithm,
and Section 6 presents an overview of our empirical evalua-
tion. Section 7 draws conclusions. Due to space constraints,
this paper also includes supplementary material consisting
of three appendices. Evaluation results are presented in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2014.2355823. Appendix B, available in the
online supplemental material, analyzes the complexity of
our algorithm. A detailed analysis of related work is avail-
able in Appendix C, available in the online supplemental
material.

2 BACKGROUND, MODEL, AND DEFINITIONS

This section presents notation employed, assumptions
made, and definitions of concepts used in this paper.

2.1 System Model

We consider CPSNs using decentralized, dedicated, intercon-
nected, broker processes bi to convey events between client

nodes ci, i.e., publishers and subscribers. Brokerswhich serve
client processes are called edge brokers.We use the term client
to refer to either publishers or subscribers. For presentation
simplicitywe assumeCPSNs forming directed graphs.

We focus on CPS systems whose routing algorithms fol-
low the principles of (a) downstream replication where an
event is routed in a single copy as far as possible from the
publisher and only cloned downstream as close as possible
to the subscribers interested in receiving it, (b) upstream eval-
uation where unwanted events are filtered away as close as
possible to the publisher to avoid wasting bandwidth, and
(c) subscription-based reverse-path forwarding, where subscrip-
tions are routed from the subscriber to the edge broker to
which publishers are connected, thereby forming a span-
ning tree rooted at each subscriber, and events follow the
reverse path along this tree to the subscriber. In this context,
the CPSN can either (c.1) perform subscription flooding, i.e.,
route every subscription to every publisher in the CPSN, or
(c.2) use advertisements. An advertisement defines the types
of events produced by a publisher, and a subscription on an
event type T has to be routed only to the edge broker with
at least one publisher which has advertised T .

2.2 Events and Subscriptions

An event e is a set of attribute/value pairs fa1 : v1; . . . ; ak :
vkgwhich are typically of primitive types ti including scalar
types int, float, etc. and character strings (cf. [1]). A sub-
scription is usually represented as a predicate F based on a
grammar like the following:

Predicate F ::¼ F ^ p j p
Condition p ::¼ a op v
Operator op ::¼ � j < j ¼ j > j � :

We focus on equality in the context ofstrings. Evaluation
of a subscription F on event e, written FðeÞ involves substi-
tuting the value vi for ai, for all ai 2 e. Obviously, satisfying a
subscription (F ¼ p1 ^ � � � ^ pu) requires satisfying each of its
conditions (FðeÞ ¼ Vu

r¼1 prðeÞ). Without loss of validity but
for simplifying presentation and comparison with predating
work, our subscriptions do not support disjunctions. Subscrip-
tions are usually viewed to be in disjunctive normal form
(DNF), where conjunctions are handled individually as sub-
scriptions. Disjunctions can then be dealt with by matching
events sequentially and memorizing the last event sent to a
given process, avoiding re-sends in case multiple conjunc-
tions in aDNF subscriptionmatch a same event.

2.3 Content-Based Matching

The content-based matching problem (cf. [7]) is formally
defined as: given an event e and a set of subscriptions Q,
compute u ¼ fF jF 2 Q ^FðeÞg, where FðeÞ is short for
FðeÞ ¼ true. Clearly u � Q. A na€ıve algorithm for content-
based matching works as follows: given an event e, for each
F in Q, if FðeÞ, add F to u (which is initially set to ;). The
matching complexity, i.e., the number of evaluated constraints,
of this algorithm isOðKNÞ, if jQj ¼ N and there areK attrib-
utes in the system. The time complexity of this algorithm is
also OðKNÞ. Note that a broker in a CPSN, which matches
events to subscriptions has to perform OðjujÞ to multicast an
event to the subscribers/downstream brokers.

JAYARAM ET AL.: SUBSCRIPTION NORMALIZATION FOR EFFECTIVE CONTENT-BASED MESSAGING 3185

2.4 Subscription Summarization and Routing

To avoid storing and evaluating all subscriptions at each
broker, CPSNs perform subscription summarization based on
covering relationships (subsumptions) among subscrip-
tions. When a broker receives a subscription F from a sub-
scriber or a downstream router, it forwards the subscription
to an upstream router unlessF is covered by a previous sub-

scription F0, that is, unless the set of events E satisfying F

(E ¼ fe jFðeÞg) is a subset of the set of events E0 satisfying
F0 (E0 ¼ fe jF0ðeÞg). The condition is expressed simply as

E � E0, or put differently, 8eFðeÞ) F0ðeÞ. We say that

predicate F0 covers (subsumes) F, denoted by F � F0, iff

8e;FðeÞ) F0ðeÞ. To facilitate the checking of subsumption
relationships between predicates, these are typically stored
in a partially ordered set (poset), ordered by �.

Fig. 1 shows an example of a CPSN with six clients—four
subscribers (c1, c2, c3, c4), two publishers (c5, c6) and five
brokers (b1, b2, b3, b4, b5). We focus on a single event type
StockQuote with two attributes a1 ¼ firm and a2 ¼ price

of string and float types respectively. We assume that all
the clients subscribe to StockQuotes of the same firm, e.g.,
firm ¼ ”IBM”. c1 subscribes to StockQuote with
F1 ¼ (price < 10). b1 gets the subscription, stores it and
propagates it to b3. Then c2 subscribes with F2 ¼ (price <
5). b1 gets this subscription, but does not forward it to b3, as
(price < 10) covers (price < 5), i.e., F2 � F1. Fig. 2 illus-
trates subscription summarization throughout the overlay.
Brokers b1 and b2 summarize subscriptions from fc1; c2g and

fc3; c4g respectively, and b3 further summarizes the summa-
ries from b1 and b2.

3 PROBLEM DESCRIPTION AND

STATE-OF-THE-ART

Beretta tackles several inefficiencies in content-based
publish/subscribe systems. In this section, we describe each
of them and why they arise in detail, while also placing
them in their historical context, where relevant. Related
work is further elaborated on in Appendix C, available in
the online supplemental material.

3.1 Inefficient Event Matching

Early systems advocated mostly for structural conformance
between events and subscriptions [8]. This leads to collaps-
ing all subscriptions for all types of events into one single
data-structure (e.g., poset) thus exacerbating bottlenecks.
Some early CPS systems [1] reused the poset for matching
events to subscriptions to avoid separate data-structures for
subscription storage/summarization and event matching.
This places a high load on brokers as all subscriptions end
up being stored in the same data-structure with a worst-
case depth equalling the number of nodes N in the poset. In
turn, N is in the worst case equal to the total number of sub-
scribers in the system though in practice it may be better.
Assuming that there are K attributes in an event, and there-
fore up to OðKÞ constraints in a subscription, the complex-
ity of event matching is typically OðKNÞ, leading to low
throughput and high end-to-end latency.

Most systems, even such described without event types,
use types in practice, but only much later have the benefits
of typing of events started to be exploited [9], [10]. Simi-
larly, only little work exists on taking splitting a step fur-
ther by systematically handling subscriptions attribute-wise
(e.g., [11], [12]). Two prominent categories of smarter
matching algorithms are those based on binary decision
diagrams (BDDs—e.g. [13], [14]), and on Bloom filters (e.g.
[15]). But, both these solutions have still OðKNÞ matching
complexity, unless assumptions are made, e.g., on the
amount of common constraints in subscriptions. Bloom fil-

ters also require Oð2BÞ space [15], where B is the number
of bits used to store a subscription. Ineffective algorithms
explain why, in spite of its more generic nature than the
predating less dynamic topic-based multicast model, CPSNs

Fig. 1. Example of a CPSN.

Fig. 2. Example of re-subscriptions, and cascading re-subscriptions. When c1 unsubscribes from (price < 10), b1 forwards (price< 5) to b3. Then,
when c1 subscribes to (price< 30), b1 reconstructs the poset. Since the LUB changes to (price< 30), b1 unsubscribes from (price< 5) and sub-
scribes to (price< 30).

3186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2015

like Siena [11], [16], HERMES [17], REBECA [18], Gryphon
[7], PADRES [14], [19] and JEDI [20] have not dethroned
topic-based multicast systems like ActiveMQ [21], ZeroMQ
[22] and FioranoMQ [23]. Topic-based routing is easy to
implement—routing a message only involves hashing a
string (its topic) to forward the message to interested
downstream nodes.

3.2 Inefficient Subscription Updates

Several emerging CPS applications such as high frequency
trading (HFT) or mobile location-based services need to
update their subscriptions at a high frequency [4], [5]. HFT
hinges on rapid subscription updates, using several mathe-
matical techniques to determine and change price thresholds
during the “trading day”. In location-aware applications
(location-based advertising and social networks like loopt

[24], etc.), a subscription is a function of the subscriber loca-
tion such as a perimeter surrounding the location. Whenever
the devicemoves, the subscription needs to change.

Re-subscriptions—the typical solution for subscription
changes, where a new subscription is issued and the super-
seded one is canceled—have several limitations:

� High computational cost, due to operations at each
affected broker on the poset storing subscriptions.
Deletion and insertion of new subscriptions into the
poset has a time complexity of OðKNÞ. Thus two
OðKNÞ operations have to be performed at a broker.
As shown empirically [5], under high rates of sub-
scription updates, the bulk of the computational
resources of event brokers in a CPSN is spent on
processing re-subscriptions rather than filtering and
forwarding events. This leads to drastic drops in
throughput and increased latency overall.

� Cascading re-subscriptions at upstream brokers: when
the poset’s least upper bound (LUB) changes as a
result of un- or re-subscription, then the posets at
upstream brokers also have to be updated. Hence,
re-subscriptions can lead to two update messages
being propagated per update the path from a sub-
scriber to a publisher, as illustrated by Fig. 2.

� In the absence of synchronization of UNSUBSCRIBE and
SUBSCRIBE messages during re-subscriptions, and of
guarantees by the CPSN on the time taken for re-
subscriptions to reach relevant brokers, the applica-
tion must cater for duplicates if the old and new sub-
scriptions overlap—the common case.

Parametric subscriptions [4], [5] are subscriptions referring
to variables of subscribers. A typical subscription to IBM
stock quoteswith values below a specific threshold expressed
through a CPS API as CPS.subscribe(”StockQuote”,

”firm == ‘IBM’ and price< 100.0”).Updating the price
threshold to $150 would typically require a re-subscription.
A correspond parametric subscriptions can be expressed as
CPS.subscribe(”StockQuote”, ”firm == ‘IBM’ and

price < ” + ref threshold), where threshold is an
internal subscriber variable. Instead of re-subscribing with
the new price of $150, the subscriber just sends the new value
of threshold. Note that solutions for specific applications,
such as context-aware publish/subscribe [25], [26] do not apply
toHFT.

The decentralized implementation of parametric sub-
scriptions described in [5], [27] still exhibits considerable
limitations in application scenarios requiring fast, frequent
subcription updates. First off, being “tacked on to” existing
(poset-based) matching algorithms, it still incurs a high
reaction time to updates. In addition parametric subscrip-
tions do not handle structural updates, e.g., they can not
handle updates from ”price < 100” to ”price > 100 &&

price < 150”. For scenarios like HFT which are governed
by non-trivial algorithms additional flexibility is needed for
structural subscription changes.

3.3 Large Subscription Summaries

The nodes of a poset can get arbitrarily complex if subscrip-
tions do not subsume each other. Consider the scenario in
Fig. 3. None of the subscriptions of clients c1, c2, or c3 sub-
sumes any others. Hence, the LUB is the disjunction of F1,F2

and F3. In the worst case, if N clients connect to a broker,
the LUB is the disjunction of N subscriptions, which propa-
gate through the network towards publishers (e.g., b1
forwards its LUB to b2).

A beneficial “side-effect” observed with parametric sub-
scriptions [5] is that many times (un-)subscriptions trans-
late transitively in a CPSN to parameter updates. Together
with the above-mentioned observations, this hints to an
intriguing potential for CPSN systems that are fundamen-
tally based on dynamic subscriptions.

Algorithm 1. Beretta client algorithm

1: init
2: bj {edge broker}
3: to PUBLISH(e) of type t do
4: sendðpub; t ; eÞ to bj

5: to SUBSCRIBE(F) to type t do
6: x normalize�to�well�formedðFÞ

{create interval predicates}
7: sendðsub; t ;xÞ to bj

8: to UNSUBSCRIBE from type tdo
9: send(UNSUB, t) to bj

10: upon receive(PUB, t , e) do
11: if FðeÞ jF is subscription to t then {maybe changed}
12: DELIVER(e)

13: upon change of value in dr for subscription to type t do
14: vr new values for ar in dr fdr ¼ ðar 2 ½v1; v2	 or dr ¼

ðar 2 fv1; . . . ; vngÞ}
15: sendðupd; t ; hr; vriÞ to bj

Fig. 3. Subscription summarization when none of the subscriptions sub-
sume each other.

JAYARAM ET AL.: SUBSCRIPTION NORMALIZATION FOR EFFECTIVE CONTENT-BASED MESSAGING 3187

4 SUBSCRIPTION NORMALIZATION

Beretta builds on interval subscriptions—subscriptions where
the only boolean operator is 2. To avoid ambiguities, we
refer to subscriptions F following the grammar introduced
in Section 2.2 as regular subscriptions. Beretta normalizes
regular subscriptions into well-formed interval subscriptions.
An interval subscription is represented as an interval predi-
cate x with the following grammar:

Predicate x ::¼ x ^ d j d
Condition d ::¼ a 2 ½v; v	 j a 2 fv; . . . ; vg:

A constraint ½v; v0	 represents an interval of permissible
values for an attribute of an ordered type such as integers.
Floating point values also fit this model. A constraint
fv; . . . ; vg represents a set of permissible values for an enumer-
ated (discrete) type such as strings. A well-formed interval
subscription is straightforwardly one which, for any given
attribute, has exactly one condition on that attribute. While
interval subscriptions improve the efficiency of content-
basedmatching aswewill show, they are as expressive as the
subscriptions presented in Section 2.2 (a formal account of
the expressivity of interval subscriptions is given in Appen-
dix, available in the online supplemental material). For exam-
ple, a predicate x > 1000where x is an integer attribute, can
be expressed as x 2 ½½1001, MAX_INT		. An equality (e.g.,
x ¼ 1000) can bemodeled as a inclusion in a set with a single
element. So the first step in subscription normalization
is to convert constraints involving relational operators
(<;�;¼; >;�) into constraints involving the inclusion opera-
tor (2) as we described informally above. This step yields an
interval subscription which has at most one constraint on
each attribute of an event type. It is important to note that a
generic set inclusion with n elements corresponds to n dis-
joined conjunctions (i.e., subcsriptions) in regular syntax.

To normalize the interval subscription further and make
it well-formed, i.e., to ensure that it contains exactly one
constraint for each attribute, we add wildcard constraints to
the subscription depending on the types of constraint-less
attributes. An (implicit) wildcard constraint for an ordered
type t is ½MINðtÞ;MAXðtÞ	, and
 for an enumerated type.

5 BERETTA ALGORITHMS

This section presents a novel divide and conquer matching
algorithm for CPSNs called FASTINT, which is a key com-
ponent of Beretta. FASTINT consists in a client-side compo-
nent and a broker component which deals with event
matching and routing.

5.1 Overview

Assuming events have up to K attributes and that the total
number of subscriptions is N , many existing summarization
and matching algorithms have OðKNÞmatching complexity
because they store “entire” subscriptions in a single data-
structure. Then, since, subscriptions contain multiple con-
straints on different attributes, the chances of a subscription
covering entirely another can become small, especially as the
number of attributes increases. The key strategy adopted by
FASTINT is therefore to splitwell-formed interval subscriptions
by event type t , and then by attribute a, thereby using one data-
structure for each attribute of every event type (see Fig. 4).

Algorithm 2. FASTINT broker algorithm as executed by
bi. Common processing of data-structure modifications
(new subscriptions, unsubscriptions, updates) are
regrouped in PROPAGATE. � represents concatenation

1: init
2: subs½	 {subscribed clients/brokers by event types t}
3: pubs½	 {publishing clients/brokers event types t}
4: vals½	½	½	 {current constraint values by event types t ,

attribute, node id}
5: S½	½	 {per-attribute data-structures by event types t

and attribute}

6: upon receiveðsub; t ;�rvrÞ from nj do
7: updates ;
8: subs½t 	 subs½t 	 [fnjg {add node to subscribers of t}
9: for all ar 2 t do
10: vals½t 	½r	½nj	 vr
11: v0 lubðS½t 	½r	Þ {old LUB}
12: insertðS½t 	½r	; vr; njÞ
13: vn lubðS½t 	½r	Þ {new LUB}
14: updates updates [fhrl; v0; vnig
15: propagateðt ; updatesÞ end upon

16: upon receive(UNSUB,t) from nj do
17: updates ;
18: subs½t 	 subs½t 	nfnjg
19: for all ar 2 t do
20: v vals½t 	½r	½nj	 {get vals for nj’s condition}
21: vals½t 	½r	½nj	 ?
22: v0 lubðS½t 	½r	Þ {old LUB}
23: deleteðS½t 	½r	; v; njÞ
24: vn lubðS½t 	½r	Þ {new LUB}
25: updates updates [fhrl; v0; vnig
26: propagateðt ; updatesÞ
27: upon receiveðupd; t ; fhr1; v1i; . . . ; hrm; vmigÞ from nj do
28: updates ;
29: for all l 2 1::m do
30: v0 lubðS½t 	½rl	Þ {old LUB}
31: if typeofðrl; tÞ ¼ stringstring then
32: hvl1 ; vl2i j vl ¼ vl1 � vl2
33: deleteðS½t 	½rl	; vl1 ; njÞ {del from hash map S½t 	½rl	}
34: insertðS½t 	½rl	; vl2 ; njÞ {add to hash map S½t 	½rl	}
35: vals½t 	½rl	½nj	 vals½t 	½rl	½nj	nfvl1g [fvl2g
36: else
37: updateðS½t 	½rl	; vals½t 	½rl	½nj	; vl; njÞ {update S½t 	½rl	}
38: vals½t 	½rl	½nj	 vl
39: vn lubðS½t 	½rl	Þ {new LUB}
40: updates updates [fhrl; v0; vnig
41: propagateðt ; updatesÞ
42: procedure propagateðt ; hr1; v01; vn1i; . . . ; hrm; v0m; vnmiÞ
43: updates ;
44: for all l 2 1::m do
45: if vnl 6¼ v0l then {LUB change)update upstream}
46: if typeofðrm; tÞ ¼ stringstring then
47: updates updates [fhrl; v0l nvnl � vnl nv0l ig
48: else
49: updates updates [fhrl; vnl ig
50: if updates 6¼ ; then
51: sendðupd; t ; updatesÞ to all bk 2 pubs½t 	

For presentation simplicity, in the following, we assume
that 1) attributes are named uniquely in event types and are
ordered in events (e.g., based on names), and that 2)

3188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2015

subscription identifiers are contiguous. x represents a
sequence x1; . . . ; xn.

A broker bj in a CPSN receives well-formed interval sub-
scriptions from subscribers ci connected to it as well as down-
stream brokers. Subscriptions on an event type with k
attributes are of the form x ¼ d1 ^ � � � ^ dk. A client (see
Algorithm1) communicateswith its edge broker bj.When cre-
ating a normalized subscription x (line 6), wildcard con-
straints are automatically added for unconstrained attributes.
Upon receiving an event e, a client ci verifies if xðeÞ holds, as
updates might have occurred in the meantime. Updates to a
predicate dr trigger the sending of an updatemessage to bj.

5.2 Subscription Indexing

Next we focus on the FASTINT broker algorithm. As illus-
trated in Fig. 4 data-structures for storing constraints are
accessed by a double index, namely on event type t and attri-
bute. In Algorithms 2 and 3, S represents this index. In addi-
tion the algorithm uses three associative maps subs, pubs and
vals. The former two store sets of subcribing clients or down-
stream brokers, and sets of publishing clients or upstream
brokers, respectively, indexed by event type t . For presenta-
tion simplicity operations on these data-structures are repre-
sented as assignments and operations on the sets that they
store. To perform subscription updates efficiently, vals is
used. vals reflects the normalized nature of subscriptions,
and their inherent parameterization: vals½t 	½r	½nj	 contains a
client/downstream broker’s (with id nj) current bounds on
the interval query or set inclusion constraint on attribute ar
of event type t . Eachwell-formed subscription x on t namely
contains exactly one constraint on any attribute ar. The con-
straint either consists in upper and lower bounds (two val-
ues) or in a set of permissible values depending on the type
typeofðr; tÞ of the attribute ar in t . Either of these can repre-
sented by a sequence of values v. In the absence of actual con-
straints,MINðtÞ and MAXðtÞ are the values for an attribute
of ordered type t and
 the single value for an attribute of
string type. Note that this model also captures structural
updates: for example, an update from ½MINðtÞ; v	 to
½v0;MAXðtÞ	 for an attribute a reflects the change of a con-
straint a � v to a constraint a � v0.

5.3 SV Tree and Hash Maps

While vals serves for fast updates, FASTINT stores con-
straints for actual matching in a SV tree for an a of an

ordered type (see x in Fig. 5), and in a hash map for an attri-
bute a of an enumerated type (see z in Fig. 5). The potential
drawback of a matching algorithm based on the divide and
conquer strategy is that when an event with values for k
attributes e ¼ fa1 : v1; . . . ; ak : vkg is received, each of the
corresponding k data-structures has to be queried and the
results combined. If querying data-structure i produces
resulti, the set of subscriptions result matching e is the

intersection \ki¼1resulti whose na€ıve computation takes
OðmaxiðjresultijÞÞ time. This is undesirable because jresultj
in many cases will be smaller than any of the jresultij.

To avoid this, we precompute three pieces of information
for the relevant nodes in the attribute data-structures—S;C
and V . S is the set of identifiers of subscriptions whose
respective constraints on attribute a satisfy (“include” in the
case of interval subscriptions) the value(s) represented by
that specific node. C is simply jSj, and V is a bit vector of
size N , indexed by the identifiers of subscriptions. Bit V ½i	 is
set to 1 iff i 2 S. We use S;C and V for computing intersec-
tions efficiently.

When a is of the string type, an entry in the hash map
for attribute constraint a 2 fvg contains a tuple hS;C; V i as
outlined above with S being the set of identifiers of sub-
scriptions with constraints on a including v.

A segment tree [28] is a data-structure for storing line
segments or intervals (represented as axis-parallel line seg-
ments). In this paper, we introduce an SV tree , which is a
segment tree optimized for queries on points (rather
than intervals) and augmented with information such as
hS;C; V i mentioned above for efficient intersection. Our SV
tree is implemented as a B-tree with a fanout of f , i.e., each
node in the B-tree has at least f and up to 2f � 1 children.
Assuming that there are n subscriptions to be processed,
let the canonical intervals (i.e., intervals specified in the
subscriptions) corresponding to an ordered attribute a
be ½v1; v2	; . . . ; ½v2n�1; v2n	. Like traditional segment tree

Fig. 4. Overview of FASTINT. It uses novel SV tree s for numeric attrib-
utes and hash maps for string attributes.

Fig. 5. Illustration of FASTINT. We assume subscriptions x1 = (x 2
½30; 50	^z 2 {”IBM”}), x2 = (x 2 ½15; 25	^z 2 {”AMZN”}), x3 = x 2 ½0; 25	,
x4 ¼ z 2 {”IBM”}. Nodes with matching constraints are shaded green.
Matched event is {x:27,z:”IBM”}.

JAYARAM ET AL.: SUBSCRIPTION NORMALIZATION FOR EFFECTIVE CONTENT-BASED MESSAGING 3189

construction algorithms, FASTINT partitions the real line
induced by the values vi, i.e., FASTINT sorts the endpoints
of the canonical intervals, obtaining v01; . . . ; v

0
2n, and stores

the following disjoint elementary intervals ½MINðtÞ; v0i	; ½v01;
v02	; ½v02; v03	 . . . ½v02n�1; v02n	; ½v02n;MAXðtÞ	 in the leaves of the
segment tree. Each leaf node is also augmented with
hS;C; V i just like hash map entries. An intermediate node
contains simply the minimal interval covering all segments
of its sub-nodes (either intermediate or leaf nodes). While
matching an attribute of an event against the corresponding
SV tree , matching occurs recursively one level at a time
with at most one sub-node’s interval matching at any level.
After reaching a leaf node, hS;C; V i is returned. hS;C; V i is
similarly stored for every key in a hash map and returned
upon a corresponding query.

5.4 Basic Operations

Assuming that the hash map implementation uses a good
hashing function, load factors less than 0.5, and chaining and
rehashing, all elementary hash mapoperations have a time
complexity of Oð1Þ [29]. In the case of a set of values
v ¼ v1:::vl this time is multiplied by l. Note that for complex-
ity comparisons we can consider l ¼ 1, because l > 1 would
require a disjunction of l conjunctions in a regular DNF sub-
scription:

W
k21::l a ¼ v1. In the formal description of FAS-

TINT in Algorithms 2 and 3, the standard operations on hash
maps and SV tree s are represented in a uniformmanner:

insertðD; v; idÞ creates of an association between v and id in
data-structure D. In the case of a hash map, v represents
a set of keys (values from the perspective of matching)
for which id (a process identifier nj) is added to the set
of corresponding values. For an SV tree , v ¼ v1; v2 repre-
sents the upper and lower bounds of an interval which is
of interest to id. In the case of a hash map, insertion of
each key of v has a time complexity of Oð1Þ due to hash-
ing. But, assuming that the hashmap contains n sub-
scriptions, i.e. n keys, the vector V associated with each
key is of size n. Hence updating n vectors has a time
complexity of OðnÞ, which becomes the time complexity
of insertðD; v; idÞ. The same is true in the case of an SV
tree. Inserting an interval ½v1; v2	 into the SV tree only
involves traversing log n nodes of the tree to find the
spots to insert v1 and v2, but up to n vectors have to be
updated, with a time complexity of OðnÞ.

deleteðD; v; idÞ removes the association between v and id
from data-structure D. In the case of a hash map, id is
removed for all keys v. For an SV tree , the interval
denoted by v ¼ v1; v2 associated with id is removed. In
the case of a hash map, deletion of each key of v has a
time complexity of Oð1Þ due to hashing. But, assuming
that the hashmap contains n subscriptions, i.e. n keys, the
vector V associated with each key is of size n. Hence
updating n vectors has a time complexity of OðnÞ, which
becomes the time complexity of deleteðD; v; idÞ. In the
case of an SV tree, deleting an interval ½v1; v2	 from the SV
tree only involves traversing log n nodes of the tree to
find the tree nodes containing v1 and v2, but up to n vec-
tors have to be updated, with a time complexity ofOðnÞ.

retrieveðD; vÞ queries data-structureD for all ids associated
with value v. For a hash map, the return set includes all

values stored for key v; for an SV tree the query returns
the ids of all intervals which contain v.

lubðDÞ returns the “covering constraint” for data-structure
D. For a hash map H this includes all keys, unless the
key set includes the wildcard
, in which case only that
value is needed. For an SV tree , the covering interval
stored in the root node is returned.

updateðD; v; v0; idÞ changes the association between v and id in

data-structure D to v0 for id. This can be na€ıvely imple-
mented by DELETE and INSERT. This operation is only used for
S, where both bounds for a constraint are replaced atom-
ically for simplicity even if only one has changed; in the
case of hash maps used for string attributes, updates focus
on only adding new elements and removing obsolete ones.
Handling of new subscriptions and unsubscriptions

follow similar structures. Changes are made to all relevant
data-structures. For any such data-structure D, the LUB
before update is stored. After all updates have been per-
formed, the set of previous LUBs and respective new
LUBs are passed to PROPAGATE which determines all actual
changes. In the case of interval queries, it suffices that one
of the bounds has changed. In the case of set inclusions
the obsolete elements v1 and new elements v2 are deter-
mined; the two sets are concatenated by inserting a special
token value �: v1 � v2. When handling a corresponding
update message UPD, the two sets are removed from and
added to the appropriate hash map respectively. After
handling such an update, any transitive updates are simi-
larly handled via PROPAGATE. This illustrates the funda-
mental nature of updates in Beretta: except when a broker
b1 connects to another broker b2 for the first time or dis-
connects from b2, all changes in broker connections take
place via update messages.

5.5 Matching

When an event e with k attributes is received (Lines 52-65
in Algorithm 3), at most k corresponding data-structures
are “evaluated” to determine subscriptions that match e.
If an attribute ai is of an ordered type, then S is queried
in Oð1Þ to retrieve the corresponding SV tree T (Line 59).
If e’s ai value is vi, then T is searched with vi to determine
the set of intervals (and thereby the subscriptions S½i)
that match vi. If ai is of string type, S is queried in Oð1Þ
to retrieve the corresponding hash map H. The subscrip-
tions S½i	 that match vi are obtained by querying H for vi.
GET on hash maps and SV tree s returns a tuple with three
elements, hS; C; V i.

In Algorithm 3, we use a variable Vec to refer to a pre-
computed bit matrix whose dimensions are k�N . When an
event e ¼ fa1 : v1; . . . ; al : vkg is received, Vec½i	 points to the
vector encoding subscriptions matching vi. Since every sub-
scription matches an unconstrained attribute, Vec½i	 points
to a bit vector whose bits are 1 if ai is unconstrained. Since

result � mink
i¼1ðresultiÞ, Algorithm 3 keeps track of the

index (min result index) of the smallest resulti, and the set
of subscriptions contained in it. To decide whether e
matches any of the subscriptions in resultmin result index, a bit-
wise AND operation is performed on the k bits of Vec½j	 for
all j 2 Vec½min result index	. This yields a complexity of

OðK logN þ KminK
i¼1ðjresultijÞÞ, because k � K.

3190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2015

5.6 Summarization Approximation

When sending a summary to a parent, a broker approximates
the summarization. Remember that a broker manages a sepa-
rate data-structure S½t 	½r	 for each attribute ar of a given
event type T . The LUB of such a data-structure covers all
conditions on the respective attribute for all subscriptions
known to the broker. A broker summary for a given event
type simply consists in the conjunction of these LUBs. In
Algorithm 2 this conjunction arises implicitly, as update
messages (line 51) contain the LUBs for the relevant types
and attributes.

Algorithm 3. FASTINT – Matching

52: upon receive(PUB, t , e ¼ fa1 : v1; . . . ; ak : vkg) from nj

53: Subs new 2-D array of size k� jsubs½t 	j
54: Count new 1-D array of size k
55: Vec new 2-D array of size k� jsubs½t 	j
56: min result count jsubs½t 	j
57: min result subs½t 	
58: for i ¼ 1::k do
59: hSubs½i	; Count½i	; Vec½i	i retrieveðS½t	½ai	; vi)
60: if Count½i	 � min result count then
61: min result count Count½i	
62: min result index i
63: for all index 2 Subs½min result index	 do
64: if bitwise�andðVec½index	½1; . . . ; k	Þ ¼ 1Þ then
65: result result [findexg
66: for all nk 2 resultnfnjg do
67: sendðpub; t ; eÞ to nk

This approximation can be disabled in Beretta, e.g., for
sets of summarized subscriptions below a threshold size,
and a disjunction (created like in traditional approaches)
sent to parent brokers instead. In this scenario, a subscrip-
tion sent by a broker bi to its parent broker bj consists in
fact in a set of (logically disjoined) normalized subscrip-
tions, say of size u, necessary to cover all subscriptions of
bj. Upon a change at bi to its data-structures, e.g., induced
by the addition, removal, or update of a subscription, there
are two scenarios: (a) the set of disjoined subscriptions in
this root subscription remains the same, or (b) it changes.
In the former case, if the values of certain variables have
changed only the updates need to be transmitted to bj. In
the latter case we can further distinguish three cases, based
on whether the number of disjoined subscriptions in the
root (b.1) grows to v, (b.2) remains u (some subscriptions
in the disjunction may have changed though), or (b.3)
shrinks to v. In all cases, we identify minðu; vÞ subscrip-
tions—preferably such that were in the previous set

already—with the previous ones, and send corresponding
variable updates where necessary. If we have more sub-
scriptions now (v > u) or fewer ones (v < u) then bi addi-
tionally informs bj of the new ones to be added or of those
to be removed. The latter actions are handled differently
from regular new subscriptions on unsubscriptions, as
brokers take note of multiple subscriptions that are logi-
cally linked to a same peer or client to avoid multiple
transmissions of the same event.

5.7 Initialization

Initialization on a given node with a set of subscribers
(downstream nodes) is simple and thus only outlined infor-
mally here. After identifying the set of attribute/type pairs
across all subscriptions an empty SV tree is created for every
attribute of ordered type encountered in some subscription,
and an empty hash map is likewise created for any attribute
of enumerated type. These are indexed in S by their respec-
tive attribute/type pairs.

Then the data-structures are populated from subscrip-
tions, one-by-one. In contrast to the handling of a new sub-
scription in Algorithm 2, (any) new LUBs are only
determined once all subscriptions have been added.

6 SUMMARY OF EVALUATION

In this section we present a summary of our empirical evalu-
ation. Please refer toAppendixA, available in the online sup-
plemental material, for a detailed description. We use two
benchmarks for empirical evaluation, based on: (1) Market-
cetera algorithmic trading, and (2) Highway Traffic Manage-
ment (HTM). We compare Beretta against (1) Beretta-
NoApprox, which disables summarization approximation in
Beretta, (2) EV, a CPSN which uses the Rete algorithm [30]
for event matching, posets for subscription summarization
and supports parametric subscriptions [5], (3) EV-Resub,
which is the same as EV, except for the use of re-subscrip-
tions for subscription updates, (4) the seminal Siena [1]
CPSN, and (5) Apache ActiveMQ [21]. We use four main
metrics to evaluate the performance—throughput, event
propagation latency (EPL), delay in propagating updates
from subscribers to CPSNs, and the percentage of stale
events that are delivered to a subscriber during subscription
updates. In addition we measure the main memory (RAM)
usage of the various CPSNs as well as bandwidth usage.

Tables 1 and 2 present an overview of our results. Details
of the topology used, benchmarks, systems being evaluated,
configurations and a detailed analysis of the results, along
with graphical illustrations of the same are presented in

TABLE 1
HTM Benchmark

Increase in Decrease in Decrease in Decrease in Parameter

Throughput EPL Delay Spurious events varied

Beretta vs. 1.14 – 1.28� 1.12 – 1.19� 1.09 – 1.21� 1.38 – 1.55� # subscribers
Beretta-NoApprox 1.19 – 1.46 � 1.05 – 1.23� 1.13 – 1.31 � 1.07 – 3.17 � upd. frequency

Beretta vs. 1.58 – 1.85� 2.16 – 2.44� 1.07–1.29� 2.24 – 4.48� # subscribers
EV 1.67 – 1.97 2.16 – 2.43 � 1.95 – 2.44 � 1.61 – 3.57 � upd. frequency

Beretta vs. 3.08 – 5.98� 3.12 – 4.4� 2.05 – 5.7� 3.38 – 7.43� # subscribers
ActiveMQ 3.2 – 7.2 � 3.14 – 4.7 � 2.4 – 6.5 � 2.13 – 6.21 � upd. frequency

JAYARAM ET AL.: SUBSCRIPTION NORMALIZATION FOR EFFECTIVE CONTENT-BASED MESSAGING 3191

Appendix A, available in the online supplemental material.
In the case of the Marketcetera benchmark, we observe that
the use of summarization approximation increases the
throughput of Beretta by up to 1.29�with an increase in the
number of subscribers and by up to 1.25� with an increase
in update frequency, both of which are non-trivial. EPL,
delay and the percentage of spurious events are lower in
Beretta by up to 1.22�, 1.58� and 1.35� respectively. With
respect to Siena, the improvements in performance are very
substantial, by up to more than 100� in the case of through-
put. This is because of (1) the use of posets for both summa-
rization and matching, (2) inefficiencies due to not
aggressively using types, and (3) the use of re-subscriptions
for handling subscription changes. Similar trends are also
seen in the case of EPL and delay (more than 5� lower) as
well as the percentage of spurious events (more than 20�
lower). As the differences in performance are easily
observed in the case of Siena, we do not quantify them in
more detail in Tables 1 and 2.

In the case of Marketctera, when compared to EV, the per-
formance benefits are much more substantial—up to 2.47�
higher throughput, and up to 3�, 4.29� and 3.47� lower
EPL, delay and spurious events respectively. Since EV
already supports re-subscriptions, these benefits are purely
due to the efficiency of FASTINT over the Rete matching
algorithm due to type-based splitting, indexing and efficient
computation of intersections. In Appendix A, available in
the online supplemental material, we also observe a compar-
ison of EV versus EV-Resub as well as Beretta versus EV-
Resub—EV significantly outperforms EV-Resub which char-
acterizes the performance benefits of parametric subscrip-
tions. We also observe that performance benefits of Beretta
are much more substantial when compared to ActiveMQ—
up to 7.91� higher throughput as well as up to 4.06�, 7.94�
and 15.5� lower EPL, delay and spurious events respec-
tively. This is both because of the absence of a summariza-
tion-based overlay network, as well as inefficient matching.

As hinted to by Table 1, performance benefits similar to
Marketctera are also seen in the case of HTM. The trends
are very similar, even though the two benchmarks having
different numbers of publishers, subscribers and event
types. The causes of these performance trends between the
different systems also remain the same, as contained in the
discussion of Marketcetera above.

7 CONCLUSIONS

This paper has presented Beretta, a new content-based
publish/subscribe system. Beretta introduces types, and a

simplified predicate grammar which allows it to normalize
all subscriptions, leading to implicit parameterization and
thus fast, localized, subscription updates.

Many algorithms for CPS matching have been presented
in literature, most without analysis of their complexity.
FASTINT is to the best of our knowledge the first algorithm
to achieve matching of events with a number of constraint
matches logarithmic in the total number of subscriptions.
FASTINT also lends itself well to subscription summarization
[31], by allowing for the most generic constraints on indi-
vidual attributes to be extracted easily from respective data
structures and conjoined to form an over-approximized
summary of size OðKÞ. For precise summarization, a poset
can also be used [32].

This paper, in addition to presenting FASTINT, also
presents a detailed empirical evaluation of Beretta by vary-
ing several parameters—number of event types, update rate
at subscribers, number of subscribers as well as selectivity.
In all cases, Beretta outperforms several other state-of-the-
art publish/subscribe systems.

ACKNOWLEDGMENTS

Research partially funded by US National Science Founda-
tion (NSF) (grants 0644013 and 0834529) and by DARPA
(grant N11AP20014).

REFERENCES

[1] A. Carzaniga and D. S. Rosenblum and A. L. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM Trans.
Comput. Syst., vol. 19, pp. 332–383, Aug. 2001.

[2] N. Fotiou, D. Trossen, and G. C. Polyzos, “Illustrating a publish-
subscribe internet architecture,” Telecommun. Syst., vol. 51, no. 4,
pp. 233–245, 2012.

[3] Project CCNx. (2014). Palo Alto Research Center, Palo Alto, CA,
USA [Online]. Available: http://www.ccnx.org/

[4] Y. Huang and H. Garcia-Molina, “Parameterized subscriptions in
publish/subscribe systems,” Data Knowl. Eng., vol. 60, pp. 435–
450, Mar. 2007.

[5] K.R. Jayaram and C. Jayalath and P. Eugster, “Parametric content-
based publish/subscribe,” ACM Trans. Comput. Syst., vol. 31, May
2013, http://dl.acm.org/citation.cfm?doid=2465346.2465347

[6] K. R. Jayaram and P. Eugster, “Split and subsume: Subscription
normalization for effective content-based publish/subscribe
messaging,” in Proc. 31st Int. Conf. Distrib. Comput. Syst., 2011,
pp. 824–835.

[7] M. K. Aguilera and R. E. Strom and D. C. Sturman and M. Astley
and T. D. Chandra, “Matching events in a content-based subscrip-
tion system,” in Proc. 18th Annu. ACM Symp. Principles Distrib.
Comput., 199, pp. 53–61.

[8] B. Oki and M. Pfluegl and A. Siegel and D. Skeen, “The infor-
mation bus: An architecture for extensible distributed sys-
tems,” in Proc. 14th ACM Symp. Operating Syst. Principles, 1993,
pp. 58–68.

TABLE 2
Marketcetera Benchmark

Increase in Decrease in Decrease in Decrease in Parameter

Throughput EPL Delay Spurious events varied

Beretta vs. 1.15 – 1.29� 1.14 – 1.17� 1.12 – 1.19� 1.08 – 1.35� # subscribers
Beretta-NoApprox 1.13 – 1.25 � 1.08 – 1.22� 1.15 – 1.58 � 1.04 – 1.35 � upd. frequency

Beretta vs. 2.36 – 2.47� 1.74 – 2.48� 1.26–1.81� 1.83 – 3.47� # subscribers
EV 1.67 – 1.56 2.4 – 3 � 1.98 – 4.29 � 1.68 – 3.4 � upd. frequency

Beretta vs. 5.12 – 6.67 � 2.88 – 3.6� 3.52 – 7.94� 8.45 – 15.52� # subscribers
ActiveMQ 5.23 – 7.91 � 3 – 4.06 � 2.07 – 4.49 � 8.18 – 14.56 � upd. frequency

3192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2015

[9] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O.
Seidel, and M. Spiteri, “Generic support for distributed
applications,” IEEE Comput., vol. 33, no. 3, pp. 68–76, Mar. 2000.

[10] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient fil-
tering of XML documents with XPath expressions,” VLDB J.,
vol. 11, pp. 354–379, 2002.

[11] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based
network,” in Proc. SIGCOMM, 2003, pp. 163–174.

[12] P. Triantafillou and A. Economides, “Subscription summariza-
tion: A new paradigm for efficient publish/subscribe systems,” in
Proc. 24th Int. Conf. Distrib. Comput. Syst., 2004, pp. 562–571.

[13] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient fil-
tering in publish-subscribe systems using binary decision dia-
grams,” in Proc. 23rd Int. Conf. Softw. Eng., 2001, pp. 443–452.

[14] G. Li, S. Hou, and H.-A. Jacobsen, “A unified approach to routing,
covering and merging in publish/subscribe systems based on
modified binary decision diagrams,” in Proc. 25th Int. Conf. Distrib.
Comput. Syst., 2005, pp. 447–457.

[15] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-
based publish/subscribe,” in Proc. 2nd Int. Conf. Distrib. Event-
Based Syst., 2008, pp. 71–81.

[16] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A routing scheme
for content-based networking,” in Proc. INFOCOM, 2004, pp. 918–
928.

[17] P. Pietzuch, B. Shand, and J. Bacon, “A framework for event com-
position in distributed systems,” in Proc. ACM/IFIP/USENIX Int.
Conf. Middleware, 2003, pp. 62–82.

[18] L. Fiege, F. G€artner, O. Kasten, and A. Zeidler, “Supporting mobil-
ity in content-based publish/subscribe middleware,” in Proc.
ACM/IFIP/USENIX Int. Conf. Middleware, 2003, pp. 103–122.

[19] G. Li, V. Muthusamy, and H.-A. Jacobsen, “Adaptive content-
based routing in general overlay topologies,” in Proc. ACM/IFIP/
USENIX Int. Conf. Middleware, 2008, pp. 1–21.

[20] G. Cugola, E. D. Nitto, and A. Fuggetta, “The JEDI event-based
infrastructure and its application to the development of the OPSS
WFMS,” IEEE Trans. Softw. Eng., vol. 27, no. 9, pp. 827–850, Sep.
2001.

[21] Apache Software Foundation. (2010). ActiveMQ [Online]. Avail-
able: http://activemq.apache.org/

[22] ZeroMQ., ZeroMQ Inc. (2010) [Online]. Available: http://www.
zeromq.org

[23] Fiorano Software Inc. (2010). FioranoMQ JMS Server [Online]. Avail-
able: http://www.fiorano.com/products/Enterprise-Messaging/
JMS/Java-Message-Service/FioranoMQ.php

[24] CrunchBase (2013). Loopt [Online]. Available: http://www.
crunchbase.com/company/loopt

[25] G. Cugola, A. Margara, and M. Migliavacca, “Context-aware
publish-subscribe: Model, implementation, and evaluation,” in
Proc. IEEE Symp. Comput. Commun., 2009, pp. 75–881.

[26] R. Meier and V. Cahill, “On event-based middleware for location-
aware mobile applications,” IEEE Trans. Softw. Eng., vol. 36, no. 3,
pp. 409–430, May/Jun. 2010.

[27] K. R. Jayaram, C. Jayalath, and P. Eugster, “Parametric subscrip-
tions for content-based publish/subscribe networks,” in Proc.
ACM/IFIP/USENIX 11th Int. Conf. Middleware, 2010, pp. 128–147.

[28] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars,
Computational Geometry: Algorithms and Applications. New York,
NY, USA: Springer-Verlag, 2008.

[29] T. H. Cormen, R. L. Rivest, C. Leiserson, and C. H. Stein, Introduc-
tion to Algorithms. Cambridge, MA, USA: MIT Press, 2010.

[30] C. Forgy, “Rete: A fast algorithm for the many pattern/many
object pattern match problem,” in Expert Systems. Los Alamitos,
CA, USA: IEEE Comput. Soc. Press, 1990, pp. 324–341.

[31] P. Triantafillou and A. A. Economides, “Subscription summariza-
tion: A new paradigm for efficient publish/subscribe systems,” in
Proc. 24th Int. Conf. Distrib. Comput. Syst., 2004, pp. 562–571.

[32] A. Carzaniga, D. Rosenblum, and A. Wolf, “Achieving scalability
and expressiveness in an internet-scale event notification service,”
in Proc. 19th Annu. ACM Symp. Principles Distrib. Comput., 2000,
pp. 219–227.

[33] R. Agostino. (2011). The Marketcetera Trading Platform [Online].
Available: www.marketcetera.org

[34] Activ Financial. (2012). ACTIV Data Feed [Online]. Available:
http://www.activfinancial.com/

[35] FIX Protocol Limited. (2012). The Financ. Inf. eXchange (FIX) Proto-
col [Online]. Available: http://www.fixprotocol.org/

[36] NYSE Euronext. (2012). NYSE Euronext Press Release [Online].
Available: http://www.nyse.com/press/1245924443893.html

[37] S. Schneider, “DDS and distributed data-centric embedded sys-
tems,” Dr. Dobb’s J. [Online]. Available. http://www.drdobbs.
com/embedded-systems/196601852

[38] D. Barnett, “Publish-subscribe model connects Tokyo highways,”
in Ind. Embedded Syst., Mar. 2007, http://industrial.embedded-
computing.com/article-id/?2072=

[39] T. Sivaharan, G. S. Blair, and G. Coulson, “GREEN: A configurable
and re-configurable publish-subscribe middleware for pervasive
computing,” in Proc. Confederated Int. Conf. Move Meaningful Inter-
net Syst., 2005, vol. 3760, pp. 732–749.

[40] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel,
“SCRIBE: The design of a large-scale event notification infra-
structure,” in Netw. Group Commun. 2001.

[41] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz,
“Bayeux: An architecture for scalable and fault-tolerant wide-area
data dissemination,” in Proc. 11th Int. Workshop Netw. Operating
Syst. Support Digital Audio Video, 2001, pp. 11–20.

[42] M. Sadoghi and H.-A. Jacobsen, “BE-Tree: An index structure to
efficiently match boolean expressions over high-dimensional dis-
crete space,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011,
pp. 637–648.

[43] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-
based publish/subscribe,” in Proc. 2nd Int. Conf. Distrib. Event-
Based Syst., 2008, pp. 71–81.

[44] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “A scalable and elastic
publish/subscribe service,” in Proc. IEEE Int. Parallel Distrib. Pro-
cess. Symp., 2011, pp. 1254–1265.

[45] Y-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H.
Wang, “Subscription partitioning and routing in content-based
publish/subscribe systems,” presented at the 16th Int. Symp.
Distributed Computing Systems, Toulouse, France, 2002.

K.R. Jayaram received the MS and PhD degrees
from Purdue University. He is a research staff
member with IBM Research at the Thomas J.
Watson Research Center in Yorktown Heights,
NY. Until recently, he was a postdoctoral
researcher at HP Labs in Palo Alto, CA. He is
interested in distributed systems and program-
ming languages.

Weihang Wang is currently working toward the
PhD degree in computer science at Purdue Uni-
versity. She is interested in distributed algorithms
and data center systems.

Patrick Eugster received the MS and PhD
degrees from EPFL. He is an associate professor
in computer science at Purdue University inter-
ested in distributed systems, algorithms, and pro-
gramming. He received the National Science
Foundation (NSF) CAREER award in 2007. He is
a member of US Defense Advanced Research
Projects Agency (DARPA)’s 2011 computer sci-
ence study group, and received a ERC Consoli-
dator award in 2013.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JAYARAM ET AL.: SUBSCRIPTION NORMALIZATION FOR EFFECTIVE CONTENT-BASED MESSAGING 3193

