
Empowering Web Applications with WebAssembly:
Are We There Yet?

Weihang Wang
University at Buffalo, SUNY

weihangw@buffalo.edu

Abstract—WebAssembly is the newest web standard. It defines
a compact bytecode format that allows it to be loaded and
executed fast. While WebAssembly is generally believed to be
faster than JavaScript, there have been inconsistent results when
it comes to showing which code is faster. Unfortunately, insuffi-
cient study has been conducted to understand the performance
benefits of WebAssembly. In this paper, we investigate how
browser engines optimize WebAssembly execution in comparison
to JavaScript. In particular, we measure their execution time and
memory usage with diverse programs. Our results show that
(1) JIT optimization in Chrome significantly impacts JavaScript
speed but has no discernible effect on WebAssembly speed; (2)
WebAssembly uses much more memory than JavaScript. We
hope that our findings can help WebAssembly virtual machine
developers uncover optimization opportunities.

I. INTRODUCTION

WebAssembly (abbreviated Wasm) [1] is the newest web
standard designed to speed up web applications. It defines a
portable and compact bytecode format to serve as a compilation
target for other languages such as C, C++, and Rust. Leading
companies, such as eBay, Google, and Norton, have recently
embraced WebAssembly in a variety of projects (including
barcode scanners [2], pattern matching [3], and TensorFlow.js
machine learning applications [4]) to improve the speed of
services previously developed in JavaScript.

Although WebAssembly is generally believed to be faster
than JavaScript, there have been inconsistent findings in
practice [5], [6], [7]. For example, eBay developers used
WebAssembly to create a barcode scanner, which increased the
speed by 50 times over the JavaScript solution [2]. Samsung
developers, on the other hand, discovered that when multiplying
matrices of specific sizes on the Samsung Internet browser
(v7.2.10.12), WebAssembly is slower than JavaScript [8].

Unfortunately, insufficient study has been done to under-
stand WebAssembly’s performance benefit over JavaScript.
Existing work on WebAssembly performance measurement
either focuses on comparing WebAssembly with native code
or is limited to one particular type of application. Haas
et al. [1] measured the performance of WebAssembly in
comparison to asm.js and native code. Jangda et al. [9]
analyzed the performance of WebAssembly vs. native code.
Sandhu et al. [10] studied the performance of sparse matrix-
vector multiplication in WebAssembly, and Herrera et al.
[11] measured the performance of numerical programs using
WebAssembly.

This paper focuses on comparing WebAssembly with generic
JavaScript using diverse benchmarks with multiple inputs.
We investigate how browser engines optimize WebAssembly
execution comparing to JavaScript. In particular, WebAssembly
runtime differs from JavaScript runtime in two aspects. First,
WebAssembly programs are delivered as compiled binaries that
can be loaded and decoded faster than JavaScript programs,
which have to be parsed and compiled at runtime. Second,
unlike JavaScript that uses garbage collection, WebAssembly
employs a linear memory model that allocates a large chunk
of memory at instantiation. In this paper, we measure their
performances to answer two research questions:

RQ1. Is WebAssembly always faster than JavaScript?
RQ2. Which is more memory efficient, WebAssembly or

JavaScript?

To answer the research questions, we compile 30 widely-used
C benchmarks to WebAssembly and JavaScript, and measure
their execution time and memory usage on Google Chrome
(v79). Our results show that:

1. For small program input, WebAssembly is faster than
JavaScript. However, when the input size is increased,
more than half of the WebAssembly programs (56.7%)
become slower than JavaScript. This is due to the fact that
a lengthier execution with repeating loops results in a more
aggressive Just-in-time (JIT) compilation on JavaScript.
Chrome’s JIT optimizations, on the other hand, do not
significantly enhance WebAssembly speed.

2. WebAssembly requires substantially more memory than
JavaScript in the Chrome browser (v79). This is because
of the usage of garbage collection in JavaScript, which
dynamically monitors memory allocations to decide when
the memory that is no longer in use should be reclaimed.
WebAssembly, on the other hand, uses a linear memory
model that allocates a big chunk of memory at instantiation
and does not reclaim memory automatically.

We hope that our findings and analysis results will help
WebAssembly virtual machine developers in improving We-
bAssembly runtime speed and memory usage.

II. BACKGROUND

WebAssembly and JavaScript both execute in JavaScript
engines. However, the two languages differ significantly in
terms of execution model and memory management.

A. Execution Model

JavaScript source code is parsed, optimized, and compiled
at runtime. Inside JavaScript engines, JavaScript source code
must first be parsed to an abstract syntax tree, which is used to
generate bytecode. To speed up JavaScript execution, modern
browser engines use Just-in-time (JIT) compilation [12] on the
occurrences of frequently executed bytecode to convert it to
machine code for direct execution on the hardware.

By contrast, the low-level WebAssembly bytecode does
not need to be parsed because it is ready to be compiled
into machine code. Moreover, WebAssembly has already gone
through the majority of optimizations during compilation. The
runtime speed is highly reliant on how well browsers optimize
WebAssembly execution.

B. Memory Management

Memory allocation in JavaScript is managed by the garbage
collector that automatically monitors memory allocation and
identifies when a block of allocated memory is no longer in
use and reclaims it. As a result of the automated memory
management, JavaScript is relatively memory-efficient. As
demonstrated in the experiments (Section IV-B1), the memory
required by JavaScript programs remains constant even when
dealing with extremely large input.

In contrast to JavaScript’s garbage collection, WebAssembly
uses a linear memory model [13]. The linear memory is
represented as a contiguous buffer of untyped bytes that both
WebAssembly and JavaScript can read and modify. When a
WebAssembly module is instantiated, a memory instance is
created in order to allocate a chunk of linear memory for the
module to use and emulate dynamic memory allocations. If
the initial memory is used up, the memory instance will be
extended to a larger size. When processing a large amount
of data, our experiments show that WebAssembly consumes
significantly more memory than JavaScript.

Collecting
Results

Benchmarks
(C Source code)

Transforming
Source Code

Compiling
C to Wasm/JS

Replacing
Incompatible

Functions

Compiled
WASM

Transformed
C Programs

Compiled
JS

Instrumenting
and Measuring

Input
Embedding

Fig. 1. Overview.

III. METHODOLOGY

Fig. 1 shows the procedure we use to measure the perfor-
mance of WebAssembly and JavaScript. It has three steps: (1)
Transforming Source Code, (2) Compiling C to Wasm/JS, and
(3) Collecting Result.

A. Transforming Source Code

In the first step, we preprocess the source code by transform-
ing it and replacing incompatible primitives with compliant
implementations. This preprocessing step is needed because the
Cheerp [14] compiler, which we use to compile C programs

to WebAssembly/JavaScript, does not support all C features
that mainstream C compilers (such as GCC) do. We handle
these features that aren’t supported, including Exception and
Union, that prevent us from compiling the C programs to
WebAssembly and JavaScript.

try {
...
if(matrix[i][j][k] <= 0)

throw std::runtime_error(
"Runtime Error");

} catch (...) {
std::cout << e.what()

<< std::endl;
}

1
2
3
4

5
6

8

(b) Union data type

20

21
22

23
24

25
26

9
10
11
12
13
14
15
16
17

(a) try-catch exception handler

union {
double a;
unsigned long long b;

} t;
t.a = ...;
t.b = ...;

int error = 0;
...
if(matrix[i][j][k] <= 0)

error = 1;
...
if(error) {

std::cout << "Runtime
Error" << std::endl;

}

struct { double a; } t2;
typedef struct {

unsigned long long b;
} TB;
t2.a = ...;
((TB*)(&t2))->b = ...;

Fig. 2. Transforming try-catch exception handler.

For example, Cheerp does not support C exceptions prop-
erly [15]. In particular, Cheerp eliminates all the catch blocks
from the try-catch statements but leaves the associated
throw statements in place, resulting in dangling exceptions dur-
ing runtime. As unhandled exceptions can cause runtime errors,
Cheerp provides a workaround solution which forces an abort
whenever an exception is thrown through the -fexceptions
command line option. In practice, however, if any code uses
exceptions for purposes other than throwing errors (for example,
using exceptions to jump out of loops), Cheerp will not translate
the code correctly, and the source code logic after compilation
will be wrong. To resolve unsupported exceptions, we transform
the source code to a no-exception version. As shown in Fig. 2,
we remove the try-catch statement and replace a throw
statement with a variable error (at line 9) that stores whether
the exception occurs or not. Statements in the catch block
are copied to the error predicate (lines 15-16) which will be
executed if the exception occurs.

B. Compiling C to Wasm/JS

After preprocessing, we compile the transformed C programs
to WebAssembly and JavaScript using Cheerp. During the
compilation, several parameters are used:

• Input Size. The value of a program’s input that affects
the amount of calculations is referred to as its input size
(e.g., the dimensions of a matrix multiplication). In our
experiment, we compile 30 C benchmark programs chosen
from the PolyBenchC benchmark suite [16] (Section IV-A).
For each benchmark, we use five sets of input: Extra Small
(XS), Small (S), Medium (M), Large (L), and Extra Large
(XL), as specified in PolyBenchC.

• Optimization Level. Cheerp provides several optimiza-
tion levels. We use optimization level -O2 in our experi-
ment since it achieves a good balance between execution
time, resulting code size, and compilation time [17].

• Stack/Heap Limit. By default, Cheerp-compiled We-
bAssembly programs have a maximum heap size of
8MB and maximum stack size of 1MB. A program
that uses heap/stack in excess of this limit will cause
runtime errors. To overcome this limit, we use com-

2

TABLE I
POLYBENCHC BENCHMARK STATISTICS.

Program cLOC LOC Program cLOC LOC Program cLOC LOC
covariance 175 958 3mm 229 1,015 trisolv 154 936
correlation 201 984 atax 170 953 deriche 227 1,010
gemm 194 978 bicg 186 969 floyd-warshall 146 928
gemver 215 997 doitgen 176 960 nussinov 495 1,277
gesummv 181 963 mvt 180 962 adi 205 988
symm 194 977 cholesky 170 952 fdtd-2d 214 998
syrk 172 955 durbin 163 945 heat-3d 171 954
syr2k 187 970 gramschmidt 185 974 jacobi-1d 157 940
trmm 171 954 lu 170 952 jacobi-2d 160 943
2mm 214 999 ludcmp 212 994 seidel-2d 150 933
* cLOC excludes benchmark harness.

piler flags ‘cheerp-linear-heap-size’ and ‘cheerp-
linear-stack-size’ to increase the heap/stack size.

C. Collecting Result

1) Including Wasm/JS within a Webpage: To measure the
runtime performance in browsers, we create an HTML webpage
that includes the compiled WebAssembly/JavaScript program.
This webpage is minimal and includes just the JavaScript
program or the JavaScript loader (generated for instantiating
WebAssembly) using a ‘<script>’ tag to reduce the overhead
imposed by other page elements.

2) Measuring Execution Time: We use the JavaScript timer
performance.now() [18] to measure the execution time,
which has a precision of up to microseconds. The timer is
included in both the generated JavaScript program and the
JavaScript loader, and calls to the timer are placed before
and after the target program starts and ends. We run each
benchmark ten times and calculate the average.

3) Measuring Memory Usage: We measure memory usage
using developer tools, i.e., Chrome DevTools, which contains
a heap profiler [19] that shows memory distribution by a
page’s JavaScript objects and DOM nodes. The memory
usage observed includes overhead caused by other browser
components such as page renderer. To reduce the overhead
imposed by other tasks, we run just one browser tab at a time
that executes a single benchmark.

IV. EVALUATION

We measure the performance differences in Google Chrome
(v79). The experiments were done on a machine with Intel i7
CPU, 16GB memory, running Ubuntu 18.04.

A. Subject Programs

We compile 30 C benchmarks to WebAssembly/JavaScript
and compare their performance differences. Table I lists
the 30 C benchmarks. These programs are selected from
PolyBenchC (version 4.2.1), which includes compute-intensive
programs that we believe may represent some of the use cases
for which WebAssembly was designed [20]. For example,
it includes programs that perform matrix calculations and
graph algorithms which are important kernels for many image
processing applications and scientific model simulations.

TABLE II
EXECUTION TIME STATISTICS.

Input Size SD #1 SD gmean2 SU #3 SU gmean4 All gmean5

Extra-small 0 0x ↓ 30 35.30x ↑ 35.30x ↑
Small 1 1.53x ↓ 29 8.35x ↑ 7.67x ↑
Medium 17 1.53x ↓ 13 3.68x ↑ 1.38x ↑
Large 15 1.67x ↓ 15 1.16x ↑ 0.83x ↑
Extra-large 17 1.22x ↓ 13 1.08x ↑ 0.92x ↑
1: # of benchmarks which WebAssembly runs slower than JavaScript.
SD is short for the slowdown. 2: Geometric mean for SD. 3: # of benchmarks
which WebAssembly runs faster than JavaScript. SU is short for speedup.
4: Geometric mean for SU. 5: Geometric mean for all 30 benchmarks.

B. RQ1: Execution Time

1) Results: The execution time results are shown in Table
II. WebAssembly outperforms JavaScript for most of the
benchmarks when using XS or S input (100% and 96.7% for XS
and S, respectively). Comparing with JavaScript, WebAssembly
achieves a 35.30x average speedup for XS inputs and a 7.67x
average speedup for S inputs.

However, when the input size is increased to M, there
are 17 benchmarks where WebAssembly becomes slower
than JavaScript. For example, ‘Lu’ in WebAssembly was
62.50x and 2.84x faster than JavaScript for XS (N=40) and S
(N=120) input, respectively. However, with M input (N=400),
it became 2.49x slower. For the other 13 benchmarks, the speed
difference between WebAssembly and JavaScript also narrows
considerably (3.68x on average). For example, when using XS
input, S input, and M input, the WebAssembly version of the
‘3mm’ benchmark is 47.71x, 10.54x, and 1.12x faster than the
JavaScript version. When the input is further increased to L or
XL, the number of benchmarks where JavaScript outperforms
WebAssembly does not increase.

2) JIT Optimization: To investigate why WebAssembly
performs worse than JavaScript when inputs are large, we
study the impact of Just-In-Time (JIT) compilation. JavaScript
engines in modern browsers use JIT compilation to increase
the speed of JavaScript by optimizing frequently executed code
(e.g., hot-loops) [21]. It is unclear if JIT can substantially
improve WebAssembly speed. To understand this correlation,
we compare the execution time with JIT enabled and disabled.
Specifically, we use the ‘--no-opt’ flag [22] and ‘--liftoff
--no-wasm-tier-up’ flags [23] to disable the JIT optimiza-
tion (i.e., TurboFan optimizing compiler) for JavaScript and
WebAssembly in Chrome.

Fig. 3 shows the performance improvement with JIT, where
the y-axis is the ratio of the execution time without JIT to the
execution time with JIT. The last two bars are the geometric
mean and average. As can be seen, JIT-enabled JavaScript
outperforms JIT-disabled JavaScript 38.37 times on average. By
contrast, most of the WebAssembly programs have performance
improvement ratios close to one, suggesting that there is no
substantial difference in performance with and without JIT.

Takeaway 1: JIT optimization in Chrome significantly
impacts JavaScript speed but has no discernible effect on
WebAssembly speed.

3

21.76

38.37

0

20

40

60

80

100

120

co
v
ar

ia
n
ce

co
rr

el
at

io
n

g
em

m

g
em

v
er

g
es

u
m

m
v

sy
m

m

sy
rk

sy
r2

k

tr
m

m

2
m

m

3
m

m

at
ax

b
ic

g

d
o

it
g
en

m
v
t

ch
o
le

sk
y

d
u
rb

in

g
ra

m
sc

h
m

id
t

lu

lu
d

cm
p

tr
is

o
lv

d
er

ic
h
e

fl
o
y
d
-w

ar
sh

al
l

n
u
ss

in
o
v

ad
i

fd
td

-2
d

h
ea

t-
3
d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

se
id

el
-2

d

G
eo

.
m

ea
n

A
v
er

ag
e

(a) JavaScript – PolyBenchC

(b) WebAssembly – PolyBenchC

1.002

1.004

0.0

0.5

1.0

1.5

co
v
ar

ia
n
ce

co
rr

el
at

io
n

g
em

m

g
em

v
er

g
es

u
m

m
v

sy
m

m

sy
rk

sy
r2

k

tr
m

m

2
m

m

3
m

m

at
ax

b
ic

g

d
o
it

g
en

m
v
t

ch
o
le

sk
y

d
u

rb
in

g
ra

m
sc

h
m

id
t

lu

lu
d
cm

p

tr
is

o
lv

d
er

ic
h
e

fl
o
y
d
-w

ar
sh

al
l

n
u
ss

in
o
v

ad
i

fd
td

-2
d

h
ea

t-
3
d

ja
co

b
i-

1
d

ja
co

b
i-

2
d

se
id

el
-2

d

G
eo

.
m

ea
n

A
v
er

ag
e

Fig. 3. Performance improvement by JIT.

TABLE III
AVERAGE MEMORY USAGE (IN KB).

Input Size JavaScript WebAssembly
Extra-small 885.5 2,020.1
Small 883.5 2,123.7
Medium 883.7 3,363.1
Large 884.3 36,168.3
Extra-large 885.1 143,899.5

C. RQ2: Memory Usage

The memory usage statistics are shown in Table III. As
can be seen, the memory usage of JavaScript does not change
substantially regardless of the input (between 883.5KB and
885.5KB). By contrast, WebAssembly programs consume
substantially more memory for larger inputs. On average,
WebAssembly programs use ≈36MB of memory with L
inputs and ≈144MB of memory with XL inputs. This is
due to the fact that WebAssembly does not support garbage
collection [24]. When a WebAssembly module was instantiated,
a large chunk of linear memory was initialized to simulate
memory allocations. If the initial memory is used up, rather
than reclaiming memory that is no longer in use, the linear
memory is expanded to a larger size. JavaScript, on the other
hand, uses garbage collection, which dynamically monitors
memory allocations and reclaims unneeded memory.

Takeaway 2: JavaScript is more memory-efficient than
WebAssembly due to garbage collection, which WebAssembly
presently does not support.

V. RELATED WORK

Our work is closely related to WebAssembly performance
measurement. Haas et al. [1] measured the performance
of WebAssembly in comparison to asm.js and native code.
Jangda et al. [9] analyzed the performance of WebAssembly
vs. native code. Sandhu et al. [10] studied the performance
of sparse matrix-vector multiplication in WebAssembly, and
Herrera et al. [11] measured the performance of numerical
programs using WebAssembly. Existing work either focuses

on comparing WebAssembly with native code or is limited
to one particular type of application. By contrast, our work
compares WebAssembly and generic JavaScript using diverse
benchmarks with multiple inputs.

There have been prior works on WebAssembly analysis tools,
protections, and studies [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39]. Wasabi [26] is
the first general-purpose framework for dynamically analyzing
WebAssembly. Lehmann et al. [27] analyzed how vulnera-
bilities in memory-unsafe source languages are exploitable
in WebAssembly binaries. Swivel [28] is a new compiler
framework for hardening WebAssembly against Spectre attacks.
Musch et al. [25] studied the prevalence of WebAssembly, and
Hilbig et al. [33] analyzed security properties, source languages,
and use cases of real-world WebAssembly binaries.

VI. LIMITATION AND FUTURE WORK

Our study is potentially subject to several threats, includ-
ing the representativeness of the benchmarks used and the
generalizability of the results. WebAssembly was designed to
be utilized in a range of applications such as cryptographic
libraries, games, image processing, arithmetic computation, and
others [25], [20]. While we believe the benchmarks we used
may represent some common WebAssembly use cases, we do
not measure large standalone applications such as games in the
comparison. Cheerp is unable to build these applications due
to the complexity of its source code. We plan to address the
incompatibility issues in the future by changing the compiler
or rewriting the source code. Another threat concerns the
generalization of the performance results. The benchmarks
used in the study were evaluated on Google Chrome, one of
the most popular web browsers. As a result, the findings of
this study do not represent the performance of other popular
browsers such as Mozilla Firefox and Microsoft Edge. We plan
to compare the performance difference across various browsers
in the future.

Our future work includes four directions. First, WebAssembly
runtime environments play a critical role in performance.
Thus, we plan to study the performance difference on various
browsers and platforms. Second, we find that compilers
generating WebAssembly programs can impact the runtime
performance, especially the optimization techniques applied.
Next, we want to investigate the impact of compilers used in
generating WebAssembly binaries. Third, our current dataset is
limited to simple C benchmarks with a few hundred LOC. We
will add complex real-world applications in the experiments.
Fourth, we plan to investigate how to optimize WebAssembly
runtime to improve its speed and memory efficiency.

VII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. This research was partially supported by NSF
2047980 and a Mozilla Research Grant (2019). Any opinions,
findings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

4

REFERENCES

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
Web up to Speed with WebAssembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 185–200. [Online]. Available:
https://doi.org/10.1145/3062341.3062363

[2] S. Padmanabhan and P. Jha, “WebAssembly at eBay: A Real-World Use
Case,” 2020. [Online]. Available: https://tech.ebayinc.com/engineering/
webassembly-at-ebay-a-real-world-use-case/

[3] R. Hill, “uBlock Origin,” 2019. [Online]. Available: https://github.com/
gorhill/uBlock

[4] D. Smilkov, N. Thorat, and A. Yuan, “Introducing the
WebAssembly backend for TensorFlow.js,” 2020. [Online].
Available: https://blog.tensorflow.org/2020/03/introducing-webassembly-
backend-for-tensorflow-js.html

[5] Vladimir, “WebAssembly vs. the world. Should you use WebAssembly?”
2018. [Online]. Available: https://blog.sqreen.com/webassembly-
performance/

[6] Stack Overflow Contributor Blindman67, “Why is webAssembly
function almost 300 time slower than same JS function,” 2018. [On-
line]. Available: https://stackoverflow.com/questions/48173979/why-is-
webassembly-function-almost-300-time-slower-than-same-js-function

[7] Stack Overflow Contributor ColinE, “Why is my WebAssembly function
slower than the JavaScript equivalent?” 2017. [Online]. Available: https:
//stackoverflow.com/questions/46331830/why-is-my-webassembly-
function-slower-than-the-javascript-equivalent/46500236#46500236

[8] W. Chen, “Performance Testing WebAssembly vs JavaScript,”
2018. [Online]. Available: https://medium.com/samsung-internet-dev/
performance-testing-web-assembly-vs-javascript-e07506fd5875

[9] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so Fast: Analyzing
the Performance of Webassembly vs. Native Code,” in Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Conference,
ser. USENIX ATC ’19. USA: USENIX Association, 2019, p. 107–120.

[10] P. Sandhu, D. Herrera, and L. Hendren, “Sparse Matrices on the
Web: Characterizing the Performance and Optimal Format Selection of
Sparse Matrix-Vector Multiplication in JavaScript and WebAssembly,”
in Proceedings of the 15th International Conference on Managed
Languages amp; Runtimes, ser. ManLang ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3237009.3237020

[11] D. Herrera, H. Chen, E. Lavoie, and L. Hendren, “WebAssembly and
JavaScript Challenge: Numerical program performance using modern
browser technologies and devices,” University of McGill, Montreal: QC,
Technical report SABLE-TR-2018-2, 2018.

[12] The Chromium Project, “V8 JavaScript Engine,” 2020. [Online].
Available: https://v8.dev/

[13] Mozilla, “WebAssembly Memory,” 2020. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global objects/WebAssembly/Memory

[14] L. Technologies, “Cheerp — c/c++ to webassembly compiler,” 2020.
[Online]. Available: https://leaningtech.com/pages/cheerp.html

[15] C. Contributors., “Cheerp FAQs,” 2020. [Online]. Avail-
able: https://github.com/leaningtech/cheerp-meta/wiki/FAQs-(Frequently-
asked-questions)

[16] L.-N. Pouchet, U. Bondugula, and T. Yuki, “PolyBench/C 4.2. Polyhedral
Benchmark Suite,” 2016.

[17] The Clang Team, “clang - the Clang C, C++, and Objective-C
compiler — Clang 11 documentation,” 2020. [Online]. Available:
https://clang.llvm.org/docs/CommandGuide/clang.html#cmdoption-o0

[18] MDN., “MDN Web Docs - performance.now().” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

[19] C. Developers., “Record heap snapshots.” [Online]. Avail-
able: https://developer.chrome.com/docs/devtools/memory-problems/
heap-snapshots/

[20] WebAssembly Contributors, “Webassembly Use Cases,” 2020. [Online].
Available: https://webassembly.org/docs/use-cases/

[21] Google, “TurboFan,” 2021. [Online]. Available: https://v8.dev/docs/
turbofan

[23] V8, “Webassembly compilation pipeline,” 2021. [Online]. Available:
https://v8.dev/docs/wasm-compilation-pipeline

[22] J. Gruber, “JIT-less V8,” 2021. [Online]. Available: https://v8.dev/blog/
jitless

[24] WebAssembly Group, “WebAssembly/design,” 2020. [Online]. Available:
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md

[25] M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “New Kid on
the Web: A Study on the Prevalence of WebAssembly in the Wild,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2019, pp. 23–42.

[26] D. Lehmann and M. Pradel, “Wasabi: A Framework for Dynamically
Analyzing WebAssembly,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1045–1058.
[Online]. Available: https://doi.org/10.1145/3297858.3304068

[27] D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New Again:
Binary Security of WebAssembly,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp. 217–234.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity20/
presentation/lehmann

[28] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson,
Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen,
and D. Stefan, “Swivel: Hardening WebAssembly against Spectre,” in
30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 1433–1450. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/narayan

[29] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “CT-Wasm:
Type-Driven Secure Cryptography for the Web Ecosystem,” Proc. ACM
Program. Lang., vol. 3, no. POPL, Jan. 2019. [Online]. Available:
https://doi.org/10.1145/3290390

[30] C. Disselkoen, J. Renner, C. Watt, T. Garfinkel, A. Levy, and D. Stefan,
“Position Paper: Progressive Memory Safety for WebAssembly,” in
Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3337167.3337171

[31] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan, “Gobi:
WebAssembly as a Practical Path to Library Sandboxing,” CoRR,
vol. abs/1912.02285, 2019. [Online]. Available: http://arxiv.org/abs/
1912.02285

[32] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “Trust, but verify: SFI safety
for native-compiled Wasm,” in NDSS. Internet Society, 2021.

[33] A. Hilbig, D. Lehmann, and M. Pradel, “An Empirical Study of
Real-World WebAssembly Binaries: Security, Languages, Use Cases,” in
Proceedings of the Web Conference 2021, ser. WWW ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2696–2708.
[Online]. Available: https://doi.org/10.1145/3442381.3450138

[34] A. Romano, Y. Zheng, and W. Wang, “MinerRay: Semantics-Aware
Analysis for Ever-Evolving Cryptojacking Detection,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1129–1140. [Online]. Available:
https://doi.org/10.1145/3324884.3416580

[35] A. Romano and W. Wang, “WasmView: Visual Testing for Webassembly
Applications,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings, ser. ICSE
’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 13–16. [Online]. Available: https://doi.org/10.1145/3377812.3382155

[36] A. Romano and W. Wang, “WASim: Understanding WebAssembly
Applications through Classification,” in Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1321–1325. [Online]. Available: https://doi.org/
10.1145/3324884.3415293

[37] A. Szanto, T. Tamm, and A. Pagnoni, “Taint Tracking for
WebAssembly,” CoRR, vol. abs/1807.08349, 2018. [Online]. Available:
http://arxiv.org/abs/1807.08349

[38] W. Fu, R. Lin, and D. Inge, “TaintAssembly: Taint-Based Information
Flow Control Tracking for WebAssembly,” CoRR, vol. abs/1802.01050,
2018. [Online]. Available: http://arxiv.org/abs/1802.01050

[39] H. Jeong, J. Jeong, S. Park, and K. Kim, “WATT : A novel web-based
toolkit to generate WebAssembly-based libraries and applications,” in
2018 IEEE International Conference on Consumer Electronics (ICCE),
Jan 2018, pp. 1–2.

5

https://doi.org/10.1145/3062341.3062363
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://blog.sqreen.com/webassembly-performance/
https://blog.sqreen.com/webassembly-performance/
https://stackoverflow.com/questions/48173979/why-is-webassembly-function-almost-300-time-slower-than-same-js-function
https://stackoverflow.com/questions/48173979/why-is-webassembly-function-almost-300-time-slower-than-same-js-function
https://stackoverflow.com/questions/46331830/why-is-my-webassembly-function-slower-than-the-javascript-equivalent/46500236#46500236
https://stackoverflow.com/questions/46331830/why-is-my-webassembly-function-slower-than-the-javascript-equivalent/46500236#46500236
https://stackoverflow.com/questions/46331830/why-is-my-webassembly-function-slower-than-the-javascript-equivalent/46500236#46500236
https://medium.com/samsung-internet-dev/performance-testing-web-assembly-vs-javascript-e07506fd5875
https://medium.com/samsung-internet-dev/performance-testing-web-assembly-vs-javascript-e07506fd5875
https://doi.org/10.1145/3237009.3237020
https://v8.dev/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/WebAssembly/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/WebAssembly/Memory
https://leaningtech.com/pages/cheerp.html
https://github.com/leaningtech/cheerp-meta/wiki/FAQs-(Frequently-asked-questions)
https://github.com/leaningtech/cheerp-meta/wiki/FAQs-(Frequently-asked-questions)
https://clang.llvm.org/docs/CommandGuide/clang.html#cmdoption-o0
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.chrome.com/docs/devtools/memory-problems/heap-snapshots/
https://developer.chrome.com/docs/devtools/memory-problems/heap-snapshots/
https://webassembly.org/docs/use-cases/
https://v8.dev/docs/turbofan
https://v8.dev/docs/turbofan
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/blog/jitless
https://v8.dev/blog/jitless
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://doi.org/10.1145/3297858.3304068
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3337167.3337171
http://arxiv.org/abs/1912.02285
http://arxiv.org/abs/1912.02285
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3324884.3416580
https://doi.org/10.1145/3377812.3382155
https://doi.org/10.1145/3324884.3415293
https://doi.org/10.1145/3324884.3415293
http://arxiv.org/abs/1807.08349
http://arxiv.org/abs/1802.01050

	Introduction
	Background
	Execution Model
	Memory Management

	Methodology
	Transforming Source Code
	Compiling C to Wasm/JS
	Collecting Result
	Including Wasm/JS within a Webpage
	Measuring Execution Time
	Measuring Memory Usage

	Evaluation
	Subject Programs
	RQ1: Execution Time
	Results
	JIT Optimization

	RQ2: Memory Usage

	Related Work
	Limitation and Future Work
	Acknowledgments
	References

